scholarly journals Insulin Receptor Isoform A Modulates Metabolic Reprogramming of Breast Cancer Cells in Response to IGF2 and Insulin Stimulation

Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1017 ◽  
Author(s):  
Vella ◽  
Nicolosi ◽  
Giuliano ◽  
Morrione ◽  
Malaguarnera ◽  
...  

Previously published work has demonstrated that overexpression of the insulin receptor isoform A (IR-A) might play a role in cancer progression and metastasis. The IR has a predominant metabolic role in physiology, but the potential role of IR-A in cancer metabolic reprogramming is unknown. We aimed to characterize the metabolic impact of IR-A and its ligand insulin like growth factor 2 (IGF2) in human breast cancer (BC) cells. To establish autocrine IGF2 action, we generated human BC cells MCF7 overexpressing the human IGF2, while we focused on the metabolic effect of IR-A by stably infecting IGF1R-ablated MCF7 (MCF7IGF1R-ve) cells with a human IR-A cDNA. We then evaluated the expression of key metabolism related molecules and measured real-time extracellular acidification rates and oxygen consumption rates using the Seahorse technology. MCF7/IGF2 cells showed increased proliferation and invasion associated with aerobic glycolysis and mitochondrial biogenesis and activity. In MCF7IGF1R-ve/IR-A cells insulin and IGF2 stimulated similar metabolic changes and were equipotent in eliciting proliferative responses, while IGF2 more potently induced invasion. The combined treatment with the glycolysis inhibitor 2-deoxyglucose (2DG) and the mitochondrial inhibitor metformin blocked cell invasion and colony formation with additive effects. Overall, these results indicate that IGF2 and IR-A overexpression may contribute to BC metabolic reprogramming.

2015 ◽  
Vol 22 (2) ◽  
pp. 145-157 ◽  
Author(s):  
Ran Rostoker ◽  
Sagi Abelson ◽  
Keren Bitton-Worms ◽  
Inna Genkin ◽  
Sarit Ben-Shmuel ◽  
...  

Accumulating evidence from clinical trials indicates that specific targeting of the IGF1 receptor (IGF1R) is not efficient as an anti-breast cancer treatment. One possible reason is that the mitogenic signals from the insulin receptor (IR) can be processed independently or as compensation to inhibition of the IGF1R. In this study, we highlight the role of the IR in mediating breast tumor progression in both WT mice and a hyperinsulinemic MKR mouse model by induction ofIr(Insr) orIgf1rknockdown (KD) in the mammary carcinoma Mvt-1 cell line. By using the specific IR antagonist-S961, we demonstrated thatIgf1r-KD induces elevated responses by the IR to IGF1. On the other hand,Ir-KD cells generated significantly smaller tumors in the mammary fat pads of both WT and MKR mice, as opposed to control cells, whereas theIgf1r-KD cells did not. The tumorigenic effects of insulin on the Mvt-1 cells were also demonstrated using microarray analysis, which indicates alteration of genes and signaling pathways involved in proliferation, the cell cycle, and apoptosis following insulin stimulation. In addition, the correlation between IR and the potential prognostic marker for aggressive breast cancer, CD24, was examined in theIr-KD cells. Fluorescence-activated cell sorting (FACS) analysis revealed more than 60% reduction in CD24 expression in theIr-KD cells when compared with the control cells. Our results also indicate that CD24-expressing cells can restore, at least in part, the tumorigenic capacity ofIr-KD cells. Taken together, our results highlight the mitogenic role of the IR in mammary tumor progression with a direct link to CD24 expression.


2014 ◽  
Author(s):  
Fanny Dupuy ◽  
Julianna Blagih ◽  
Sébastien Tabariès ◽  
Julie St-Pierre ◽  
Russell G. Jones ◽  
...  

2014 ◽  
Vol 24 ◽  
pp. S27-S28
Author(s):  
R. Rostoker ◽  
S. Abelson ◽  
K. Bitton-Worms ◽  
I. Genkin ◽  
S. Ben-Shmuel ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 432
Author(s):  
Iván Ponce ◽  
Nelson Garrido ◽  
Nicolás Tobar ◽  
Francisco Melo ◽  
Patricio C. Smith ◽  
...  

Breast tumors belong to the type of desmoplastic lesion in which a stiffer tissue structure is a determinant of breast cancer progression and constitutes a risk factor for breast cancer development. It has been proposed that cancer-associated stromal cells (responsible for this fibrotic phenomenon) are able to metabolize glucose via lactate production, which supports the catabolic metabolism of cancer cells. The aim of this work was to investigate the possible functional link between these two processes. To measure the effect of matrix rigidity on metabolic determinations, we used compliant elastic polyacrylamide gels as a substrate material, to which matrix molecules were covalently linked. We evaluated metabolite transport in stromal cells using two different FRET (Fluorescence Resonance Energy Transfer) nanosensors specific for glucose and lactate. Cell migration/invasion was evaluated using Transwell devices. We show that increased stiffness stimulates lactate production and glucose uptake by mammary fibroblasts. This response was correlated with the expression of stromal glucose transporter Glut1 and monocarboxylate transporters MCT4. Moreover, mammary stromal cells cultured on stiff matrices generated soluble factors that stimulated epithelial breast migration in a stiffness-dependent manner. Using a normal breast stromal cell line, we found that a stiffer extracellular matrix favors the acquisition mechanistical properties that promote metabolic reprograming and also constitute a stimulus for epithelial motility. This new knowledge will help us to better understand the complex relationship between fibrosis, metabolic reprogramming, and cancer malignancy.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 180
Author(s):  
Christina Mertens ◽  
Matthias Schnetz ◽  
Claudia Rehwald ◽  
Stephan Grein ◽  
Eiman Elwakeel ◽  
...  

Macrophages supply iron to the breast tumor microenvironment by enforced secretion of lipocalin-2 (Lcn-2)-bound iron as well as the increased expression of the iron exporter ferroportin (FPN). We aimed at identifying the contribution of each pathway in supplying iron for the growing tumor, thereby fostering tumor progression. Analyzing the expression profiles of Lcn-2 and FPN using the spontaneous polyoma-middle-T oncogene (PyMT) breast cancer model as well as mining publicly available TCGA (The Cancer Genome Atlas) and GEO Series(GSE) datasets from the Gene Expression Omnibus database (GEO), we found no association between tumor parameters and Lcn-2 or FPN. However, stromal/macrophage-expression of Lcn-2 correlated with tumor onset, lung metastases, and recurrence, whereas FPN did not. While the total iron amount in wildtype and Lcn-2−/− PyMT tumors showed no difference, we observed that tumor-associated macrophages from Lcn-2−/− compared to wildtype tumors stored more iron. In contrast, Lcn-2−/− tumor cells accumulated less iron than their wildtype counterparts, translating into a low migratory and proliferative capacity of Lcn-2−/− tumor cells in a 3D tumor spheroid model in vitro. Our data suggest a pivotal role of Lcn-2 in tumor iron-management, affecting tumor growth. This study underscores the role of iron for tumor progression and the need for a better understanding of iron-targeted therapy approaches.


Author(s):  
Jun-Xian Du ◽  
Yi-Hong Luo ◽  
Si-Jia Zhang ◽  
Biao Wang ◽  
Cong Chen ◽  
...  

Abstract Background Intensive evidence has highlighted the effect of aberrant alternative splicing (AS) events on cancer progression when triggered by dysregulation of the SR protein family. Nonetheless, the underlying mechanism in breast cancer (BRCA) remains elusive. Here we sought to explore the molecular function of SRSF1 and identify the key AS events regulated by SRSF1 in BRCA. Methods We conducted a comprehensive analysis of the expression and clinical correlation of SRSF1 in BRCA based on the TCGA dataset, Metabric database and clinical tissue samples. Functional analysis of SRSF1 in BRCA was conducted in vitro and in vivo. SRSF1-mediated AS events and their binding motifs were identified by RNA-seq, RNA immunoprecipitation-PCR (RIP-PCR) and in vivo crosslinking followed by immunoprecipitation (CLIP), which was further validated by the minigene reporter assay. PTPMT1 exon 3 (E3) AS was identified to partially mediate the oncogenic role of SRSF1 by the P-AKT/C-MYC axis. Finally, the expression and clinical significance of these AS events were validated in clinical samples and using the TCGA database. Results SRSF1 expression was consistently upregulated in BRCA samples, positively associated with tumor grade and the Ki-67 index, and correlated with poor prognosis in a hormone receptor-positive (HR+) cohort, which facilitated proliferation, cell migration and inhibited apoptosis in vitro and in vivo. We identified SRSF1-mediated AS events and discovered the SRSF1 binding motif in the regulation of splice switching of PTPMT1. Furthermore, PTPMT1 splice switching was regulated by SRSF1 by binding directly to its motif in E3 which partially mediated the oncogenic role of SRSF1 by the AKT/C-MYC axis. Additionally, PTPMT1 splice switching was validated in tissue samples of BRCA patients and using the TCGA database. The high-risk group, identified by AS of PTPMT1 and expression of SRSF1, possessed poorer prognosis in the stage I/II TCGA BRCA cohort. Conclusions SRSF1 exerts oncogenic roles in BRCA partially by regulating the AS of PTPMT1, which could be a therapeutic target candidate in BRCA and a prognostic factor in HR+ BRCA patient.


Sign in / Sign up

Export Citation Format

Share Document