scholarly journals Loss of miR-101-3p Promotes Transmigration of Metastatic Breast Cancer Cells through the Brain Endothelium by Inducing COX-2/MMP1 Signaling

2020 ◽  
Vol 13 (7) ◽  
pp. 144 ◽  
Author(s):  
Rania Harati ◽  
Mohammad G. Mohammad ◽  
Abdelaziz Tlili ◽  
Raafat A. El-Awady ◽  
Rifat Hamoudi

Brain metastases represent one of the incurable end stages in breast cancer (BC). Developing effective or preventive treatments is hampered by a lack of knowledge on the molecular mechanisms driving brain metastasis. Transmigration of BC cells through the brain endothelium is a key event in the pathogenesis of brain metastasis. In this study, we identified miR-101-3p as a critical micro-RNA able to reduce transmigration of BC cells through the brain endothelium. Our results revealed that miR-101-3p expression is downregulated in brain metastatic BC cells compared to less invasive variants, and varies inversely compared to the brain metastatic propensity of BC cells. Using a loss-and-gain of function approach, we found that miR-101-3p downregulation increased transmigration of BC cells through the brain endothelium in vitro by inducing COX-2 expression in cancer cells, whereas ectopic restoration of miR-101-3p exerted a metastasis-reducing effect. In regulatory experiments, we found that miR-101-3p mediated its effect by modulating COX-2-MMP1 signaling capable of degrading the inter-endothelial junctions (claudin-5 and VE-cadherin), key components of the brain endothelium. These findings suggest that miR-101-3p plays a critical role in the transmigration of breast cancer cells through the brain endothelium by modulating the COX-2-MMP1 signaling and thus may serve as a therapeutic target that can be exploited to prevent or suppress brain metastasis in human breast cancer.

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1568 ◽  
Author(s):  
Min-Hsun Kuo ◽  
Wen-Wei Chang ◽  
Bi-Wen Yeh ◽  
Yeh-Shiu Chu ◽  
Yueh-Chun Lee ◽  
...  

Breast cancer brain metastasis commonly occurs in one-fourth of breast cancer patients and is associated with poor prognosis. Abnormal glucose metabolism is found to promote cancer metastasis. Moreover, the tumor microenvironment is crucial and plays an active role in the metabolic adaptations and survival of cancer cells. Glucose transporters are overexpressed in cancer cells to increase glucose uptake. The glucose transporter 3 (GLUT3) is a high-affinity glucose transporter that is highly expressed in mammalian neurons. GLUT3 is also overexpressed in several malignant brain tumors. However, the role of GLUT3 in breast cancer brain metastasis remains unknown. The results of the present study demonstrated that GLUT3 is highly overexpressed in brain metastatic breast cancers and mediates glucose metabolic reprogramming. Furthermore, knockdown of cAMP-response element binding protein (CREB) could directly regulate GLUT3 expression in brain metastatic breast cancer cells. Notably, we verified and provided a novel role of GLUT3 in mediating glucose metabolism and assisting breast cancer cells to survive in the brain to promote brain metastasis.


Bone Research ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Haemin Kim ◽  
Bongjun Kim ◽  
Sang Il Kim ◽  
Hyung Joon Kim ◽  
Brian Y. Ryu ◽  
...  

Abstract Bone destruction induced by breast cancer metastasis causes severe complications, including death, in breast cancer patients. Communication between cancer cells and skeletal cells in metastatic bone microenvironments is a principal element that drives tumor progression and osteolysis. Tumor-derived factors play fundamental roles in this form of communication. To identify soluble factors released from cancer cells in bone metastasis, we established a highly bone-metastatic subline of MDA-MB-231 breast cancer cells. This subline (mtMDA) showed a markedly elevated ability to secrete S100A4 protein, which directly stimulated osteoclast formation via surface receptor RAGE. Recombinant S100A4 stimulated osteoclastogenesis in vitro and bone loss in vivo. Conditioned medium from mtMDA cells in which S100A4 was knocked down had a reduced ability to stimulate osteoclasts. Furthermore, the S100A4 knockdown cells elicited less bone destruction in mice than the control knockdown cells. In addition, administration of an anti-S100A4 monoclonal antibody (mAb) that we developed attenuated the stimulation of osteoclastogenesis and bone loss by mtMDA in mice. Taken together, our results suggest that S100A4 released from breast cancer cells is an important player in the osteolysis caused by breast cancer bone metastasis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4300-4300
Author(s):  
Sigal Gery ◽  
Sakae Stanosaki ◽  
Takayuki Ikezoe ◽  
Wolf K. Hofmann ◽  
Adrian F. Gombart ◽  
...  

Abstract C/EBPδ belongs to the family of highly conserved CCAAT/enhancer binding protein (C/EBP) transcription factors. Members of this family play a critical role in the regulation of mitotic growth arrest and differentiation in numerous cell types. To examine the consequences of C/EPBδ expression, we transfected C/EPBδ into CML myeloid leukemia (KCL22, K562), prostate (LNCaP, PC3, DU145), and breast (MCF-7, T47D, MDA-MB-231) cancer cell lines. C/EBPδ expression resulted in a proliferative arrest and an increase in apoptosis of the myeloid leukemia cells, as well as the prostate cells LNCaP and PC3, and the breast cells MCF-7 and T47D. In contrast, DU145 prostate and MDA-MB-231 breast cancer cells were not inhibited by C/EBPδ, indicating that the biologically properties of C/EBPδ depend upon its cellular context. We further studied the molecular mechanisms underlying the affect of C/EPBδ expression in CML leukemic cells. Myeloid differentiation of KCL22 and K562 blast cells as shown by morphologic changes and induction of secondary specific granule genes, occurred within 4 days of inducing expression of C/EBPδ. Furthermore, expression of C/EBPδ was associated with downregulation of c-Myc and cyclin E, and upregulation of the forkhead transcription factor FoxO1a (FKHR) and the cyclin-dependent kinase inhibitor p27Kip1. In addition, microarray analysis showed that C/EBPδ mRNA is upregulated during granulocytic differentiation of normal CD34+ bone marrow cells, suggesting that C/EBPδ is involved in lineage-specific differentiation. Taken together, these results show that expression of C/EBPδ in BCR-ABL-positive CML cells in blast crisis, is sufficient for neutrophil differentiation and suggest that ectopic induction of C/EBPδ in the blastic phase of CML, as well as in certain cases of prostate and breast cancers, may hold promising therapeutic potential.


2019 ◽  
Author(s):  
Anna Simon ◽  
Ming Yang ◽  
Joanne L. Marrison ◽  
Andrew D. James ◽  
Peter J. O’Toole ◽  
...  

AbstractBackgroundAn emerging problem in the treatment of breast cancer is the increasing incidence of metastases to the brain. Metastatic brain tumours are incurable and can cause epileptic seizures and cognitive impairment, so better understanding of this niche, and the cellular mechanisms, is urgently required. Microglia are the resident brain macrophage population, becoming “activated” by neuronal injury, eliciting an inflammatory response. Microglia promote proliferation, angiogenesis and invasion in brain tumours and metastases. However, the mechanisms underlying microglial involvement appear complex and better models are required to improve understanding of function.MethodsHere, we sought to address this need by developing a model to study metastatic breast cancer cell-microglial interactions using intravital imaging combined with ex vivo electrophysiology. We implanted an optical window on the parietal bone to facilitate observation of cellular behaviour in situ in the outer cortex of heterozygous Cx3cr1GFP/+ mice. Results: We detected GFP-expressing microglia in Cx3cr1GFP/+ mice up to 350 µm below the window without significant loss of resolution. When DsRed-expressing metastatic MDA-MB-231 breast cancer cells were implanted in Matrigel under the optical window, significant accumulation of activated microglia around invading tumour cells could be observed. This inflammatory response resulted in significant cortical disorganisation and aberrant spontaneously-occurring local field potential spike events around the metastatic site.ConclusionsThese data suggest that peritumoral microglial activation and accumulation may play a critical role in local tissue changes underpinning aberrant cortical activity, which offers a possible mechanism for the disrupted cognitive performance and seizures seen in patients with metastatic breast cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yunhe Lu ◽  
Lei Chen ◽  
Liangdong Li ◽  
Yiqun Cao

Brain metastasis is a major cause of death in breast cancer patients. The greatest event for brain metastasis is the breaching of the blood-brain barrier (BBB) by cancer cells. The role of exosomes in cancer metastasis is clear, whereas the role of exosomes in the integrity of the BBB is unknown. Here, we established a highly brain metastatic breast cancer cell line by three cycles of in vivo selection. The effect of exosomes on the BBB was evaluated in vitro by tracking, transepithelial/transendothelial electrical resistance (TEER), and permeability assays. BBB-associated exosomal long noncoding RNA (lncRNA) was selected from the GEO dataset and verified by real-time PCR, TEER, permeability, and Transwell assays. The cells obtained by the in vivo selection showed higher brain metastatic capacity in vivo and higher migration and invasion in vitro compared to the parental cells. Exosomes from the highly brain metastatic cells were internalized by brain microvascular endothelial cells (BMECs), which reduced TEER and increased permeability of BBB. The exosomes derived from the highly metastatic cells promoted invasion of the breast cancer cells in the BBB model. lncRNA GS1-600G8.5 was highly expressed in the highly brain metastatic cells and their exosomes, as compared to the samples with reduced metastatic behavior. Silencing of GS1-600G8.5 significantly abrogated the BBB destructive effect of exosomes. GS1-600G8.5-deficient exosomes failed to promote the infiltration of cancer cells through the BBB. Furthermore, BMECs treated with GS1-600G8.5-deprived exosomes expressed higher tight junction proteins than those treated with the control exosomes. These data suggest the exosomes derived from highly brain metastatic breast cancer cells might destroy the BBB system and promote the passage of cancer cells across the BBB, by transferring lncRNA GS1-600G8.5.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ryo Sato ◽  
Teppei Nakano ◽  
Mari Hosonaga ◽  
Oltea Sampetrean ◽  
Ritsuko Harigai ◽  
...  

Metastasis is the main cause of treatment failure and death in cancer patients. Metastasis of tumor cells to the brain occurs frequently in individuals with breast cancer, non–small cell lung cancer, or melanoma. Despite recent advances in our understanding of the causes and in the treatment of primary tumors, the biological and molecular mechanisms underlying the metastasis of cancer cells to the brain have remained unclear. Metastasizing cancer cells interact with their microenvironment in the brain to establish metastases. We have now developed mouse models of brain metastasis based on intracardiac injection of human breast cancer or melanoma cell lines, and we have performed RNA sequencing analysis to identify genes in mouse brain tissue and the human cancer cells whose expression is associated specifically with metastasis. We found that the expressions of the mouse genes Tph2, Sspo, Ptprq, and Pole as well as those of the human genes CXCR4, PLLP, TNFSF4, VCAM1, SLC8A2, and SLC7A11 were upregulated in brain tissue harboring metastases. Further characterization of such genes that contribute to the establishment of brain metastases may provide a basis for the development of new therapeutic strategies and consequent improvement in the prognosis of cancer patients.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Amita Daverey ◽  
Roman M. Levytskyy ◽  
Kimberly M. Stanke ◽  
Martonio Ponte Viana ◽  
Samantha Swenson ◽  
...  

Abstract Metastatic competence of cancer cells is influenced by many factors including metabolic alterations and changes in mitochondrial biogenesis and protein homeostasis. While it is generally accepted that mitochondria play important roles in tumorigenesis, the respective molecular events that regulate aberrant cancer cell proliferation remain to be clarified. Therefore, understanding the mechanisms underlying the role of mitochondria in cancer progression has potential implications in the development of new therapeutic strategies. We show that low expression of mitochondrial quality control protease OMA1 correlates with poor overall survival in breast cancer patients. Silencing OMA1 in vitro in patient-derived metastatic breast cancer cells isolated from the metastatic pleural effusion and atypical ductal hyperplasia mammary tumor specimens (21MT-1 and 21PT) enhances the formation of filopodia, increases cell proliferation (Ki67 expression), and induces epithelial-mesenchymal transition (EMT). Mechanistically, loss of OMA1 results in alterations in the mitochondrial protein homeostasis, as reflected by enhanced expression of canonic mitochondrial unfolded protein response genes. These changes significantly increase migratory properties in metastatic breast cancer cells, indicating that OMA1 plays a critical role in suppressing metastatic competence of breast tumors. Interestingly, these results were not observed in OMA1-depleted non-tumorigenic MCF10A mammary epithelial cells. This newly identified reduced activity/levels of OMA1 provides insights into the mechanisms leading to breast cancer development, promoting malignant progression of cancer cells and unfavorable clinical outcomes, which may represent possible prognostic markers and therapeutic targets for breast cancer treatment.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1299-1299
Author(s):  
Joana G. Brandao ◽  
Joao T. Barata ◽  
Raquel Nunes ◽  
Lee M. Nadler ◽  
Angelo A. Cardoso

Abstract The presence of breast cancer cells in the patient’s bone marrow (BM) at diagnosis is associated with resistance to treatment, disease relapse and poor prognosis. Identification of the factors implicated in the homing, survival and latency of breast cancer cells in the BM should contribute to the design of more efficient therapeutic strategies for breast cancer. There is evidence that breast cancer can recruit endothelial progenitors from the BM. Also, other epithelial tumors seem to preferentially adhere to BM endothelial cells. Therefore, we hypothesized that BM endothelium may play a significant role in the biology of breast cancer cells residing in the BM. Co-cultures in Matrigel showed that breast cancer cells interact with BM endothelium to form heterotypic multicellular networks. Moreover, breast cancer cells migrate towards BM endothelium assembled as capillary-like structures, but not to structures of BM mesenchymal stem cells or BM stroma. This migration was abrogated by pertussis toxin-mediated blockade of chemokine receptor signaling, suggesting the involvement of endothelium-secreted chemokine(s). We then evaluated the impact of breast cancer cells in the survival and proliferation of BM endothelium. All breast cancer lines tested (n=4) promoted the proliferation of BM-derived endothelial cells. This effect is mediated through the engagement of the PI3K/Akt pathway (phosphorylation of Akt at Ser437 and Thr308, and activation of its downstream substrates GSK3β, PRAS-40 and FKHRL1) since its specific blockade abrogated the stimulatory effects of breast cancer on BM endothelium. We next determined whether, reciprocally, BM endothelium impacts on breast cancer cell survival. These experiments were performed in serum-free media to enhance dependency of breast cancer cells from microenvironmental stimuli. In all cases tested, BM endothelium promoted survival/proliferation of breast cancer cells. This stimulation was accompanied by the engagement of the PI3K/Akt pathway in breast cancer cells and, in three of the four lines, the phosphorylation of Erk1/2. These effects were also observed for breast cancer cells that showed constitutive activation of Akt (MCF-7 and ZR-75-1 cells). Specific blockade of PI3K/Akt abrogated the BM endothelium-promoted survival of breast cancer cells, thus demonstrating the critical role of this pathway. These studies show that crosstalk between BM endothelial cells and breast cancer cells may impact on the survival of both cell types. These findings provide new light on the mechanisms that may facilitate the development of a tumor-permissive BM microenvironment in breast cancer, and the creation of breast cancer-supporting BM niches. Importantly, this study implicates BM endothelium as a therapeutic target in breast cancer and suggest that blockade of PI3K/Akt may impact the outcome of patients with metastatic breast cancer.


2011 ◽  
Vol 28 (8) ◽  
pp. 899-908 ◽  
Author(s):  
Yongzhen Qian ◽  
Emily Hua ◽  
Kheem Bisht ◽  
Stephan Woditschka ◽  
Konstantine W. Skordos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document