scholarly journals SUN1/2 Are Essential for RhoA/ROCK-Regulated Actomyosin Activity in Isolated Vascular Smooth Muscle Cells

Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 132
Author(s):  
Lauren Porter ◽  
Rose-Marie Minaisah ◽  
Sultan Ahmed ◽  
Seema Ali ◽  
Rosemary Norton ◽  
...  

Vascular smooth muscle cells (VSMCs) are the predominant cell type in the blood vessel wall. Changes in VSMC actomyosin activity and morphology are prevalent in cardiovascular disease. The actin cytoskeleton actively defines cellular shape and the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex, comprised of nesprin and the Sad1p, UNC-84 (SUN)-domain family members SUN1/2, has emerged as a key regulator of actin cytoskeletal organisation. Although SUN1 and SUN2 function is partially redundant, they possess specific functions and LINC complex composition is tailored for cell-type-specific functions. We investigated the importance of SUN1 and SUN2 in regulating actomyosin activity and cell morphology in VSMCs. We demonstrate that siRNA-mediated depletion of either SUN1 or SUN2 altered VSMC spreading and impaired actomyosin activity and RhoA activity. Importantly, these findings were recapitulated using aortic VSMCs isolated from wild-type and SUN2 knockout (SUN2 KO) mice. Inhibition of actomyosin activity, using the rho-associated, coiled-coil-containing protein kinase1/2 (ROCK1/2) inhibitor Y27632 or blebbistatin, reduced SUN2 mobility in the nuclear envelope and decreased the association between SUN2 and lamin A, confirming that SUN2 dynamics and interactions are influenced by actomyosin activity. We propose that the LINC complex exists in a mechanical feedback circuit with RhoA to regulate VSMC actomyosin activity and morphology.




2021 ◽  
Vol 23 (1) ◽  
pp. 331
Author(s):  
Marie Fontaine ◽  
Stéphanie Herkenne ◽  
Olivier Ek ◽  
Alicia Paquot ◽  
Amandine Boeckx ◽  
...  

The recruitment of pericytes and vascular smooth muscle cells (SMCs) that enwrap endothelial cells (ECs) is a crucial process for vascular maturation and stabilization. Communication between these two cell types is crucial during vascular development and in maintaining vessel homeostasis. Extracellular vesicles (EVs) have emerged as a new communication tool involving the exchange of microRNAs between cells. In the present study, we searched for microRNAs that could be transferred via EVs from ECs to SMCs and vice versa. Thanks to a microRNA profiling experiment, we found that two microRNAs are more exported in each cell type in coculture experiments: while miR-539 is more secreted by ECs, miR-582 is more present in EVs from SMCs. Functional assays revealed that both microRNAs can modulate both cell-type phenotypes. We further identified miR-539 and miR-582 targets, in agreement with their respective cell functions. The results obtained in vivo in the neovascularization model suggest that miR-539 and miR-582 might cooperate to trigger the process of blood vessel coverage by smooth muscle cells in a mature plexus. Taken together, these results are the first to highlight the role of miR-539 and miR-582 in angiogenesis and communication between ECs and SMCs.



2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yi-ming Zhou ◽  
Xi Lan ◽  
Han-bin Guo ◽  
Yan Zhang ◽  
Li Ma ◽  
...  

Asymmetric dimethylarginine (ADMA) induces vascular smooth muscle cells (VSMCs) migration. VSMC phenotype change is a prerequisite of migration. RhoA and Rho-kinase (ROCK) mediate migration of VSMCs. We hypothesize that ADMA induces VSMC migration via the activation of Rho/ROCK signal pathway and due to VSMCs phenotype change. ADMA activates Rho/ROCK signal pathway that interpreted by the elevation of RhoA activity and phosphorylation level of a ROCK substrate. Pretreatment with ROCK inhibitor, Y27632 completely reverses the induction of ADMA on ROCK and in turn inhibits ADMA-induced VSMCs migration. When the Rho/ROCK signal pathway has been blocked by pretreatment with Y27632, the induction of ERK signal pathway by ADMA is completely abrogated. Elimination of ADMA via overexpression of dimethylarginine dimethylaminohydrolase 2 (DDAH2) and L-arginine both blocks the effects of ADMA on the activation of Rho/ROCK and extra cellular signal-regulated kinase (ERK) in VSMCs. The expression of differentiated phenotype relative proteins was reduced and the actin cytoskeleton was disassembled by ADMA, which were blocked by Y27632, further interpreting that ADMA inducing VSMCs migration via Rho/ROCK signal pathway is due to its effect on the VSMCs phenotype change. Our present study may help to provide novel insights into the therapy and prevention of atherosclerosis.





2018 ◽  
Vol 32 (4) ◽  
pp. 2021-2035 ◽  
Author(s):  
Caroline Arnold ◽  
Eda Demirel ◽  
Anja Feldner ◽  
Guillem Genové ◽  
Hangjun Zhang ◽  
...  






Sign in / Sign up

Export Citation Format

Share Document