scholarly journals Ameloblastomas Exhibit Stem Cell Potential, Possess Neurotrophic Properties, and Establish Connections with Trigeminal Neurons

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 644 ◽  
Author(s):  
Pierfrancesco Pagella ◽  
Javier Catón ◽  
Christian T. Meisel ◽  
Thimios A. Mitsiadis

Ameloblastomas are locally invasive and aggressive odontogenic tumors treated via surgical resection, which results in facial deformity and significant morbidity. Few studies have addressed the cellular and molecular events of ameloblastoma onset and progression, thus hampering the development of non-invasive therapeutic approaches. Tumorigenesis is driven by a plethora of factors, among which innervation has been long neglected. Recent findings have shown that innervation directly promotes tumor progression. On this basis, we investigated the molecular characteristics and neurotrophic properties of human ameloblastomas. Our results showed that ameloblastomas express dental epithelial stem cell markers, as well as components of the Notch signaling pathway, indicating persistence of stemness. We demonstrated that ameloblastomas express classical stem cell markers, exhibit stem cell potential, and form spheres. These tumors express also molecules of the Notch signaling pathway, fundamental for stem cells and their fate. Additionally, we showed that ameloblastomas express the neurotrophic factors NGF and BDNF, as well as their receptors TRKA, TRKB, and P75/NGFR, which are responsible for their innervation by trigeminal axons in vivo. In vitro studies using microfluidic devices showed that ameloblastoma cells attract and form connections with these nerves. Innervation of ameloblastomas might play a key role in the onset of this malignancy and might represent a promising target for non-invasive pharmacological interventions.

2015 ◽  
Vol 37 (6) ◽  
pp. 2311-2322 ◽  
Author(s):  
Zezheng Pan ◽  
Mengli Sun ◽  
Jia Li ◽  
Fangyue Zhou ◽  
Xia Liang ◽  
...  

Background/Aims: Ovarian germline stem cells (OGSCs) have been shown to mainly exist in the ovarian surface epithelium (OSE), but the activity changes of germline stem cells during different reproductive stages and the potential regulatory signaling pathway are still unknown. The Notch signaling pathway plays a key role in cell development, primordial follicles and stem cell proliferation. However, whether it plays a role in the proliferation of OGSCs is unknown. Here, we analyzed the activity changes of germline stem cells and the correlation between germline stem cells and the Notch signaling pathway. Methods: The expression of germline stem cell markers Mvh, Ooc4 and the Notch molecules Notch1, Hes1, and Hes5 were detected during 3 days (3d), and 2, 12, 20 months (2m, 12m, 20m) mouse ovarian surface epithelium samples. DAPT, a specific inhibitor of the Notch pathway, was used to observe the influence of Notch signaling in the germline stem cells. Results: The results showed that the levels of MVH and OCT4 decreased substantially with reproductive age in ovarian surface epithelium, and the same tendency was detected in the Notch signaling molecules Notch1, Hes1 and Hes5. Dual-IF results showed that the germline stem cell markers were co-expressed with Notch molecules in the ovarian surface epithelium. While, the expression of MVH and OCT4 were reduced when the ovaries were treated with DAPT and the levels were attenuated with increasing dose of DAPT. Conclusion: Taken together, our results indicate that the viability of OGSCs decreased with the age of the mouse ovaries, and the activity of OGSCs in the ovarian surface epithelium may be related to the Notch signaling pathway.


Blood ◽  
2011 ◽  
Vol 118 (5) ◽  
pp. 1264-1273 ◽  
Author(s):  
Melanie G. Cornejo ◽  
Vinciane Mabialah ◽  
Stephen M. Sykes ◽  
Tulasi Khandan ◽  
Cristina Lo Celso ◽  
...  

Abstract The NOTCH signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. However, the molecular basis for its role at the different steps of stem cell lineage commitment is unclear. We recently identified the NOTCH signaling pathway as a positive regulator of megakaryocyte lineage specification during hematopoiesis, but the developmental pathways that allow hematopoietic stem cell differentiation into the erythro-megakaryocytic lineages remain controversial. Here, we investigated the role of downstream mediators of NOTCH during megakaryopoiesis and report crosstalk between the NOTCH and PI3K/AKT pathways. We demonstrate the inhibitory role of phosphatase with tensin homolog and Forkhead Box class O factors on megakaryopoiesis in vivo. Finally, our data annotate developmental mechanisms in the hematopoietic system that enable a decision to be made either at the hematopoietic stem cell or the committed progenitor level to commit to the megakaryocyte lineage, supporting the existence of 2 distinct developmental pathways.


2019 ◽  
Author(s):  
Zhou Zhilai ◽  
Tian Xiaobo ◽  
Mo Biling ◽  
Xu Huali ◽  
Yao Shun ◽  
...  

Abstract Background The therapeutic effects of adipose-derived mesenchymal stem cell (ADSC) transplantation have been demonstrated in several models of central nervous system (CNS) injury and are thought to involve the modulation of the inflammatory response. However, the exact underlying molecular mechanism is poorly understood. Activation of the Jagged1/Notch signaling pathway is thought to involve inflammatory and gliotic events in the CNS. Here, we elucidated the effect of ADSC transplantation on the inflammatory reaction after spinal cord injury (SCI) and the potential mechanism mediated by Jagged1/Notch signaling pathway suppression.Methods Using a mouse model of compression SCI, ADSCs and Jagged1 small interfering RNA (siRNA) were injected into the spinal cord. Locomotor function, spinal cord tissue morphology and the levels of various proteins and transcripts were compared between groups.Results ADSC treatment resulted in significant downregulation of proinflammatory mediator expression and reduced ionized calcium binding adapter molecule 1 (Iba1) and ED1 staining in the injured spinal cord, promoting the survival of neurons. These changes were accompanied by improved functional recovery. The augmentation of the Jagged1/Notch signaling pathway after SCI was suppressed by ADSC transplantation. The inhibition of the Jagged1/Notch signaling pathway by Jagged1 siRNA resulted in a decrease in SCI-induced proinflammatory cytokines as well as the activation of microglia. Furthermore, Jagged1 knockdown suppressed the phosphorylation of JAK/STAT3 following SCI.Conclusion The results of this study demonstrated that the therapeutic effects of ADSCs in SCI mice were partly due to Jagged1/notch signaling pathway inhibition and a subsequent reduction in JAK/STAT3 phosphorylation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4303-4303
Author(s):  
Laura R. Goldberg ◽  
Mark S Dooner ◽  
Yanhui Deng ◽  
Elaine Papa ◽  
Mandy Pereira ◽  
...  

Abstract The study of highly purified hematopoietic stem cells (HSCs) has dominated the field of hematopoietic stem cell biology. It is widely believed that the true stem cell population lies within the Lineage negative (Lin-) population, further sub-fractionated using positive and negative selection for surface markers such as c-Kit, Sca-1, CD150, CD41, CD48, and CD34. It is research on these highly purified subsets of HSCs that forms the foundation for almost all our knowledge of HSCs, and has led to the dogma that marrow stem cells are quiescent with a stable phenotype and therefore can be purified to near homogeneity. In contrast, we have shown that a large percentage of long-term multi-lineage marrow repopulating cells in whole bone marrow (WBM) are actively cycling, that these cycling stem cells are lost during conventional HSC isolation, and that they can be found, in part, within the discarded Lineage positive (Lin+) population. Here we present data further characterizing the stem cell potential in the Lin+ fraction. We incubated WBM from B6.SJL mice with fluorescently tagged antibodies directed against TER119, B220, or T-cell markers (CD3, CD4, CD8), isolated the distinct Lin+ subsets by FACS, and then competitively engrafted each Lin+ subset into lethally irradiated C57BL/6 host mice. Donor chimerism and lineage specificity of donor cells in peripheral blood were analyzed by flow cytometry at 3 months. Although classically considered devoid of stem cell activity, we found that, when competed against equal numbers of C57BL/6 WBM, the TER119+ and B220+ B6.SJL donor cells contributed to 33% and 13% of the peripheral blood chimerism, respectively. In both cases, the engraftment was multi-lineage. When 70,000 T cell marker+ donor cells were competed with 300,000 C57BL/6 WBM, the donor cells contributed up to 1.6% of the peripheral blood multi-lineage chimerism. Given the size of the Lin+ fraction in WBM, such chimerism indicates a significant stem cell potential within this typically discarded population. Further time-points, secondary transplants and limited dilution studies are in progress to further define the prevalence and potency of this stem cell population. We have been testing mechanisms governing the loss of this stem cell population during HSC purification. First, we have previously shown that bulk Lin+ engraftment potential is due to cycling stem cells. We hypothesize that fluctuations in surface epitope expression with cell cycle transit render this population difficult to isolate with antibody-mediated strategies that rely on stable epitope expression. To begin testing this, we tracked the fluctuation of stem cell markers on Lin- cells in vitro. We isolated Lin- cells that were also negative for the stem cell markers c-Kit and Sca-1, placed them in liquid culture and, 18 hours later, re-assessed for stem cell marker expression by flow cytometry. We found that, although initially stem cell marker negative, up to 6%, 14%, and 2% of the Lin-/stem cell marker negative cells became positive for c-Kit alone, Sca-1 alone, or both c-Kit and Sca-1 expression, respectively. We are currently testing this population for a correlation between gain of c-Kit- and Sca-1 expression and stem cell function. Second, it is possible that there is a distinct subset of HSCs that are positive for both Lin+ markers and stem cell markers with stable stem cell capacity and that these distinct stem cells are thrown out in the process of lineage depletion. To begin testing this hypothesis, we have simultaneously stained WBM with antibodies directed against the Lin+ markers and conventional stem cell markers. Our preliminary data indicate that each Lin+ fraction tested to date has a subpopulation that is also positive for c-Kit and Sca-1. For example, 21% of CD3+ cells, 6.2% of CD4+ cells, 2.26% of CD8+ cells, 0.5% of B220+, and 0.45% of TER119+ cells express both c-Kit and Sca-1. We suspect these two populations have distinct functional phenotypes and experiments characterizing the molecular phenotype and engraftment capacity of these subpopulations are ongoing. In sum, our data indicate that stem cell purification skews isolation towards a small population of quiescent stem cells, underrepresenting a potentially large pool of actively cycling HSCs that are found within the Lin+ fraction. These data underscore the need to re-evaluate the total hematopoietic stem cell potential in marrow on a population level. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Author(s):  
Dharmalingam Subramaniam ◽  
Sivapriya Ponnurangam ◽  
Satish Ramalingam ◽  
Zhiyun He ◽  
Youcheng Zhang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yu Liang ◽  
Hui Han ◽  
Qiuchan Xiong ◽  
Chunlong Yang ◽  
Lu Wang ◽  
...  

The Pax7+ muscle stem cells (MuSCs) are essential for skeletal muscle homeostasis and muscle regeneration upon injury, while the molecular mechanisms underlying muscle stem cell fate determination and muscle regeneration are still not fully understood. N6-methyladenosine (m6A) RNA modification is catalyzed by METTL3 and plays important functions in posttranscriptional gene expression regulation and various biological processes. Here, we generated muscle stem cell-specific METTL3 conditional knockout mouse model and revealed that METTL3 knockout in muscle stem cells significantly inhibits the proliferation of muscle stem cells and blocks the muscle regeneration after injury. Moreover, knockin of METTL3 in muscle stem cells promotes the muscle stem cell proliferation and muscle regeneration in vivo. Mechanistically, METTL3-m6A-YTHDF1 axis regulates the mRNA translation of Notch signaling pathway. Our data demonstrated the important in vivo physiological function of METTL3-mediated m6A modification in muscle stem cells and muscle regeneration, providing molecular basis for the therapy of stem cell-related muscle diseases.


2018 ◽  
Vol 09 (06) ◽  
pp. 480-502
Author(s):  
Elisabeth Seidel ◽  
Cynthia de Carvalho Fischer ◽  
Christopher Neumann ◽  
Anja Reutzel-Selke ◽  
Andreas Andreou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document