scholarly journals Hinge and Transmembrane Domains of Chimeric Antigen Receptor Regulate Receptor Expression and Signaling Threshold

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1182 ◽  
Author(s):  
Kento Fujiwara ◽  
Ayaka Tsunei ◽  
Hotaka Kusabuka ◽  
Erika Ogaki ◽  
Masashi Tachibana ◽  
...  

Chimeric antigen receptor (CAR)-T cells have demonstrated significant clinical potential; however, their strong antitumor activity may cause severe adverse effects. To ensure efficacy and safe CAR-T cell therapy, it is important to understand CAR’s structure–activity relationship. To clarify the role of hinge and transmembrane domains in CAR and CAR-T cell function, we generated different chimeras and analyzed their expression levels and antigen-specific activity on CAR-T cells. First, we created a basic CAR with hinge, transmembrane, and signal transduction domains derived from CD3ζ, then we generated six CAR variants whose hinge or hinge/transmembrane domains originated from CD4, CD8α, and CD28. CAR expression level and stability on the T cell were greatly affected by transmembrane rather than hinge domain. Antigen-specific functions of most CAR-T cells depended on their CAR expression levels. However, CARs with a CD8α- or CD28-derived hinge domain showed significant differences in CAR-T cell function, despite their equal expression levels. These results suggest that CAR signaling intensity into T cells was affected not only by CAR expression level, but also by the hinge domain. Our discoveries indicate that the hinge domain regulates the CAR signaling threshold and the transmembrane domain regulates the amount of CAR signaling via control of CAR expression level.

2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A26.2-A27
Author(s):  
M Seifert ◽  
M Benmebarek ◽  
B Cadilha ◽  
J Jobst ◽  
J Dörr ◽  
...  

BackgroundDespite remarkable response rates mediated by anti-CD19 chimeric antigen receptor (CAR) T cells in selected B cell malignancies, CAR T cell therapy still lacks efficacy in the vast majority of tumors. A substantial limiting factor of CAR T cell function is the immunosuppressive tumor microenvironment. Among other mechanisms, the accumulation of adenosine within the tumor can contribute to disease progression by suppressing anti-tumor immune responses. Adenosine 2a- and 2b-receptor (A2A and A2B)-mediated cAMP build-up suppresses T cell effector functions. In the present study we hypothesize, that combination therapy with the selective A2A/A2B dual antagonist AB928 (etrumadenant) enhances CAR T cell efficacy.Materials and MethodsSecond generation murine (anti-EPCAM) and human (anti-MSLN) CAR constructs, containing intracellular CD28 and CD3ζ domains, were fused via overlap extension PCR cloning. Murine or human T cells were retrovirally transduced to stably express the CAR constructs. A2A/A2B signaling in CAR T cells was analyzed by phospho-specific flow cytometry of CREB (pS133)/ATF-1 (pS63). CAR T cell activation was quantified by flow cytometry and enzyme-linked immunosorbent assay (ELISA) of IFN-γ, IL-2 and TNF-α. CAR T cell proliferation was assessed by flow cytometry. CAR T cell cytotoxicity was assessed by impedance based real-time cell analysis.ResultsAB928 protected murine CAR T cells from cAMP response element-binding protein (CREB) phosphorylation in the presence of stable adenosine analogue 5′-N-ethylcarboxamidoadenosine (NECA). NECA inhibited antigen-dependent CAR T cell cytokine secretion in response to four murine tumor cell lines. CAR T cell-mediated tumor cell lysis as well as proliferation were decreased in the presence of NECA or adenosine. Importantly, AB928 fully restored CAR T cell cytotoxicity, proliferation, and cytokine secretion in a dose dependent manner. Further, AB928 also restored antigen dependent cytokine secretion of human CAR T cells in the presence of NECA.ConclusionsHere we used the A2A/A2B dual antagonist AB928 to overcome adenosine-mediated suppression of CAR T cells. We found that AB928 enhanced important CAR T cell effector functions in the presence of the adenosine analogue, suggesting that combination therapy with AB928 may improve CAR T cell efficacy. This study was limited to in vitro experiments. To confirm the relevance of our findings, this combination therapy must be further investigated in an in vivo setting.Disclosure InformationM. Seifert: None. M. Benmebarek : None. B. Cadilha : None. J. Jobst: None. J. Dörr: None. T. Lorenzini: None. D. Dhoqina: None. J. Zhang: None. J. Zhang: None. U. Schindler: E. Ownership Interest (stock, stock options, patent or other intellectual property); Modest; Amgen Inc., Arcus Biosciences. Other; Significant; Arcus Biosciences. S. Endres: None. S. Kobold: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Significant; Arcus Biosciences.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 44-44
Author(s):  
McKensie Collins ◽  
Weimin Kong ◽  
Inyoung Jung ◽  
Stefan M Lundh ◽  
J. Joseph Melenhorst

Chronic Lymphocytic Leukemia (CLL) is a B cell malignancy that accounts for nearly 1/3rd of adult leukemia diagnoses in the Western world. Conventional chemo-immunotherapies initially control progression, but in the absence of curative options patients ultimately succumb to their disease. Chimeric Antigen Receptor (CAR) T cell therapy is potentially curative, but only 26% of CLL patients have a complete response. CLL-stimulated T cells have reduced effector functions and B-CLL cells themselves are believed to be immunosuppressive. Our work demonstrates that insufficient activation of CAR T cells by CLL cells mediates some of these effects and that the results are conserved between ROR1- and CD19-targeting CARs. Results: In this study we used an in vitro system to model the in vivo anti-tumor response in which CAR T cells serially engage with CLL cells. Multiple stimulations of CD19 or ROR1-targeting CAR T cells with primary CLL cells recapitulated many aspects of known T cell dysfunction including reduced proliferation, cytokine production, and activation. While the initial stimulation induced low level proliferation, subsequent stimulations failed to elicit additional effector functions. We further found that these functional defects were not permanent, and that CAR T cell function could be restored by switching to a stimulus with an aAPC (artificial Antigen Presenting Cell) control cell line. The aAPCs are well-characterized as potent stimulators of CAR T cell effector responses. Flow cytometry revealed that CLL-stimulated CAR T cells retained a non-activated, baseline differentiation profile, suggesting that CLL cells fail to stimulate CAR T cells rather than rendering them non-functional. One mechanism that could dampen activation is immune suppression. We assessed this at a high level by stimulating CAR T cells with CLL cells and aAPCs mixed at known ratios. However, even cultures containing 75% CLL cells stimulated proliferation and cytokine production. Extensive immune-phenotyping revealed high level expression of the IL-2 Receptor on 90% (18/20) of the B-CLL cells tested. Since cytokine sinking via IL-2 receptor expression is a well-known mechanism of regulatory T cell suppression, we hypothesized that CLL cells similarly sink IL-2, blunting T cell activation. To test this, we supplemented IL-2 into CLL/CAR T cell co-cultures and showed that this rescued proliferation but only partially restored cytokine production. In contrast to our hypothesis, analysis of cytokine production by flow cytometry showed that CLL-stimulated CAR T cells did not produce IL-2 following a 6- or 12-hour stimulus, but TNFα was expressed after 12-hours. Similarly, CAR T cell degranulation, a prerequisite for target cell lysis was triggered after CLL recognition. These data again suggested that CLL cells insufficiently stimulate CAR T cell cytokine production, but also showed that cytolytic activity against CLL cells is intact. We further proposed that CLL cells express insufficient levels of co-stimulatory and adhesion molecules to activate CAR T cells. Flow cytometry showed that most CLL cells expressed co-stimulatory and adhesion molecules at low levels; we hypothesized that up-regulating these molecules would enhance CAR T cell targeting of CLL cells. CLL cells were activated with CD40L and IL-4, which increased expression of CD54, CD58, CD80, and CD86. Stimulating CAR T cells with activated CLL cells enhanced CAR T cell proliferation and induced cell conjugate formation, indicating cell activation. Therefore, improving CLL stimulatory capacity can rescue T cell dysfunctions. To assess whether IL-2 addition and CD40 ligation were synergistic, we combined the two assays; however, we saw no additional improvement over IL-2 addition alone, suggesting that the two interventions may act upon the same pathway. Importantly, we also showed that rescue of CAR T cell function via IL-2 addition or CD40 ligation was not CAR-specific, as we observed the functional defects and subsequent rescue with both a ROR1-targeting CAR and the gold standard CD19-targeting CAR. Conclusions: Together, these data show that CAR T cell "defects" in CLL are actually insufficient activation, and improving the stimulatory capacity of CLL cells may enable better clinical responses. Further, this effect is not CAR-specific and these results may therefore be broadly applicable to multiple therapies for this disease. Disclosures Melenhorst: IASO Biotherapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Kite Pharma: Research Funding; Novartis: Other: Speaker, Research Funding; Johnson & Johnson: Consultancy, Other: Speaker; Simcere of America: Consultancy; Poseida Therapeutics: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3032-3032
Author(s):  
Arantxa Romero-Toledo ◽  
Robin Sanderson ◽  
John G. Gribben

The complex crosstalk between malignant chronic lymphocytic leukemia (CLL) cells and the tumor microenvironment (TME) is not fully understood. CLL is associated with an inflammatory TME and T cells exhibit exhaustion and multiple functional defects, fully recapitulated in Eµ-TCL1 (TCL1) mice and induced in healthy mice by adoptive transfer (AT) of murine CLL cells, making it an ideal model to test novel immunotherapies for this disease. Myeloid-derived suppressor cells (MDSCs), a non-leukemic cell type within the TME, are immature myeloid cells with the ability to suppress T cell function and promote Treg expansion. In humans, CLL cells can induce conversion of monocytes to MDSCs provoking their accumulation in peripheral blood (PB). MDSCs include two major subsets granulocytic (Gr) and monocytic (M)-MDSC. In mice, Gr-MDSCs are defined as CD11b+Ly6G+Ly6Clo and M-MDSC as CD11b+Ly6G-Ly6Chi. Both murine and human MDSCs express BTK. We observed that in CLL-bearing mice, MDSCs cells are lost in PB as disease progresses. Treatment with both BTK inhibitors (BTKi), ibrutinib (Ibr) and acalabrutinib (Acala), result in shift of T cell function from Th2 towards Th1 polarity and increase MDSC populations in vivo. We aimed to determine whether combination treatment with BTKi and chimeric antigen receptor (CAR) T cells renders recovery of the MDSC population in CLL-bearing mice. To address this question we designed a two-part experiment, aiming to mimic the clinically relevant scenario of pre-treatment of CLL with BTKi to improve CAR T cell function. Part 1 of our experiment consisted of 4 groups (n=12) of 2.5 month old C57/Bl6 mice. Three groups had AT with 30x106 TCL1 splenocytes. A fourth group of WT mice remained CLL-free as a positive control and donors for WT T cells. When PB CLL load reached >10% (day 14) animals were randomized to either Ibr or Acala at 0.15 mg/l in 2% HPBC or no treatment for 21 days. All animals from part 1 were culled at day 35 post-AT and splenic cells were isolated, analyzed and used to manufacture CAR T cells. WT, CLL, Ibr and Acala treated T cells were activated and transduced with a CD19-CD28 CAR to treat mice in part 2. Here, 50 WT mice were given AT with 20x106 TCL1 splenocytes for CLL engraftment. All mice were injected with lymphodepleting cyclophosphamide (100mg/kg IP) one day prior to IV CAR injection. At day 21 post-AT, mice were treated with WT CAR, CLL CAR, IbrCAR, AcalaCAR or untransduced T cells. MDSC sub-populations were monitored weekly in PB and SP were analysed by flow cytometry. As malignant CD19+CD5+ cells expands in PB, the overall myeloid (CD19-CD11b+) cell population was not affected, but MDSCs significantly decreased (p<0.0001). Treatment with Acala, but not Ibr restores total MDSCs. However, MDSC impairment occurs in the Gr- but not M- MDSC population and both Acala and Ibr restores this population (Figure 1a). When we examined the spleen, treatment with both Ibr (p<0.001) and Acala (p<0.001) reduced CD5+CD19+ cells, whereas neither BTKi affected the overall myeloid (CD19-CD11b+) cell population. Gr-MDSCs were restored by both treatments whilst M-MDSCs were only restored after Ibr treatment (p<0.001 in each case). In part 2 of this experiment we observed that treatment with all CAR-T cell groups provokes the clearance of all CD19+CD5+ cells. The overall CD19-CD11b+ population stays the same across all mice groups 35 days after treatment in PB with any group of CAR and untransduced T cells. Overall MDSC population is maintained following all CAR T cells compared to CLL-bearing mice (p<0.0001) and it is the Gr- but not the M- MDSC population which is recovered in PB (Figure 1b). These parts of the experiments can of course be influenced by treatment with cyclophosphamide. We conclude that novel therapies for CLL treatment have an effect not only in CLL cells but also in non-malignant cell components of the TME. In this animal model of CLL, the rapid expansion of CLL cells in PB and secondary lymphoid organs provokes loss of MDSC, particularly the Gr-MDSC subpopulation is affected. Treatment with BTKi and CAR T cells provokes clearance of CLL cells in PB and spleen allowing MDSC recovery; suggesting this may be BTK and ITK independent. We continue to explore secondary lymphoid organs to further characterize the shift of the CLL microenvironment from an immunosuppressive to an immune effective one and its impact on immune function in this model. Disclosures Sanderson: Kite/Gilead: Honoraria. Gribben:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Acerta/Astra Zeneca: Consultancy, Honoraria, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5432-5432
Author(s):  
Mauro Castellarin ◽  
Joseph A. Fraietta ◽  
Jihyun Lee ◽  
John Scholler ◽  
Yangbing Zhao ◽  
...  

Abstract Chimeric antigen receptor (CAR) engineered T cells have been used clinically to improve outcomes in patients with hematopoietic malignancies owing to the ability of CAR T cells to recognize tumor antigens and kill malignant cells. CAR T cells possess the antigen recognizing capability of an antibody through the single chain variable fragment (scFv) and their cytotoxicity is enhanced through signaling via the intracellular domains of T cell receptors and co-activating receptors such as CD3zeta and 4-1BB, respectively. Thus, CAR expressing T cells are able to detect cancer cells through tumor antigens and can become activated to unleash their cytotoxic potentials in a non-MHC restricted manner. Therapeutic side-effects can occur when T-cell receptor targeting is misdirected to the incorrect tissue causing potentially serious on-target off-tumor cytotoxicity. Factors that influence CAR targeting include expression levels of tumor-associated antigen in normal tissue and the binding affinities of scFvs. Our first step in developing an in vivo, on target, off-tumor, CAR T cell toxicity model was to generate mice with tunable expression of a human tumor antigen in normal tissue. NSG mice were IV injected with recombinant adeno-associated virus serotype 8 (rAAV8) to deliver a truncated human ErbB2 (Her2/neu or CD340) gene and a Katushka fluorescent reporter that were driven by the liver-specific promoter, thyroxine binding globulin (TBG). AAV8 genomic copies (GCs) were injected at varying dilutions of 1.5 x 1012 GC/mouse, 7.25 x 1011 GC/mouseand 1.5x1010 GC/mouse to induce a range of expression of ErbB2 in the liver. Katushka expression was visualized in vivo using the IVIS small animal imager. ErbB2 gene expression was detected using reverse transcription polymerase chain reaction (qRT-PCR) and the ErbB2 protein was detected using western blots and immunohistochemistry (IHC). Our data has shown that expression levels of ErbB2 and the Katushka reporter positively correlated with the number of AAV8 GCs that were injected. This enabled us to obtain ErbB2 expression levels in the liver comparable to the levels seen in either ErbB2High tumors (eg. SK-OV3) or ErbB2Low tumors (eg. PC3 and HEK293T). To determine if affinity tuning of scFvs will allow CAR T cells to discriminate between high and low ErbB2 expression in the liver, T cells were engineered to co-express the click beetle red (CBR) reporter and either a high-affinity scFv, anti-ErbB2 CAR (4D5) or a low-affinity scFv, anti-ErbB2 CAR (4D5-5). These T cells were then IV injected into NSG mice that had either high or low ErbB2-expressing livers. Although these experiments were ongoing at the time of abstract submission, we will show our results on T cell trafficking in the liver, which will be visualized by IHC and by in vivo imaging using the IVIS small animal imager. Liver toxicity will be assessed by histological examination and by measuring liver function via standard enzymatic testing of blood. Furthermore, we aim to show whether affinity tuning of scFvs will allow CAR T cells to selectively recognize and target ErbB2High tumors while sparing ErbB2Low normal tissue. This will be performed by inoculating ErbB2high SK-OV3 tumor cells into mice with ErbB2Low livers followed by IV injection with either 4D5 or 4D5-5 CAR T cells. We expect that the low-affinity anti-ErbB2 CAR (4D5-5) T cells will target the ErbB2High SK-OV3 tumor cells and cause tumor regression while preserving function in the ErbB2Low liver. If so, then we will have shown that our pre-clinical mouse model can be used to identify on-target off-tumor CAR T cell toxicity, which will aid in improving the safety profile and clinical outcomes of future CAR T cell therapies. Disclosures Scholler: Novartis: Patents & Royalties. Zhao:Novartis: Patents & Royalties, Research Funding. June:Novartis: Patents & Royalties, Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 842-842
Author(s):  
Sarwish Rafiq ◽  
Hollie J. Jackson ◽  
Oladapo Yeku ◽  
Terence J Purdon ◽  
Dayenne G. van Leeuwen ◽  
...  

Abstract T cell therapies have had valuable clinical responses in patients with cancer. Chimeric antigen receptor (CAR) T cells can be genetically engineered to recognize tumor cells and CAR T cell therapy has shown impressive results in the setting of B cell acute lymphoblastic leukemia but has been less effective in treating other types of hematologic and solid tumors. The inhibitory tumor microenvironment (TME), including expression of ligands that bind inhibitory receptors on T cells, e.g. programmed death receptor 1 (PD-1), can dampen CAR T cell responses. Separately, immune checkpoint blockade therapy involving the disruption of PD-1 and programmed death receptor ligand1 (PD-L1) interaction allows for re-activation of tumor-infiltrating lymphocytes (TIL) to have anti-tumor function. This approach has shown clinical responses in a range of malignancies, but has been less efficacious in poorly immunogenic tumors. To prevent PD-1-mediated dampening of CAR T cell function, we have co-modified CAR T cells to secrete PD-1 blocking single chain variable fragments (scFv). We first designed mouse constructs with which we could investigate the scFv-secreting CAR T cells in the context of a syngeneic immune-competent intact TME. CAR constructs were engineered directed against either human CD19 or MUC-16 (ecto) with mouse signaling domains and a anti-mouse PD-1 scFv. Mouse T cells transduced with these constructs expressed the CAR on the surface and secreted detectable amounts of scFv that bound to mouse PD-1. The scFv-secreting CAR T cells were cytotoxic and produced IFN-g when co-cultured with PD-L1 expressing tumors in vitro . We utilized a syngeneic mouse model to study scFv secreting CAR T cells in a model with an intact TME. In tumor-bearing mice treated with CAR T cells, scFv-secreting CAR T cells enhanced survival as compared to second generation CAR T cells. The survival benefit achieved with scFv-secreting CAR T cells was comparable to that achieved with systemic infusion of PD-1 blocking antibody, but with localized delivery of PD-1 blockade. Mice treated with scFv-secreting CAR T cells had detectable scFv in vivo in the TME. Lastly, long term surviving mice had detectable CAR T cells in the bone marrow by PCR, demonstrating persistence and suggesting an immunological memory. We next aimed to translate PD-1 blocking scFv CAR T cells to a clinically relevant human model utilizing a novel anti-human PD-1 blocking scFv. CAR constructs were engineered with recognition domains directed against human CD19 or MUC-16 (ecto) and human signaling domains. Human T cells modified with the CAR constructs express the CAR on the surface and secrete detectable amounts of PD-1 blocking scFv. The scFv binds to human PD-1 and scFv-secreting CAR T cells are cytotoxic to PD-L1 expressing tumors. Expression of PD-1-blocking scFv enhances CAR T cell function against PD-L1 expressing tumors in xenograft models of hematological and solid tumors by enhancing survival in tumor-bearing mice as compared to second generation CAR T cells. Furthermore, scFv-secreting CAR T cells exhibit in vivo bystander T cell enhancement of function, suggesting scFv-secreting CAR T cells can reactivate endogenous TILs in the TME. These data support the novel concept that localized delivery of scFv by CAR T cells can successfully block PD-1 binding to PD-L1 and work in an autocrine manner to prevent dampening of CAR T cell responses as well as a paracrine manner to activate endogenous tumor infiltrating lymphocytes to enhance the overall anti-tumor efficacy of CAR T cell therapy. Disclosures Curran: Juno Therapeutics: Research Funding; Novartis: Consultancy. Yan: Eureka Therapeutics Inc: Employment. Wang: Eureka Therapeutics Inc.: Employment, Equity Ownership. Xiang: Eureka Therapeutics Inc.: Employment. Liu: Eureka Therpeutics Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Brentjens: Juno Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 299
Author(s):  
Yuan He ◽  
Martijn Vlaming ◽  
Tom van Meerten ◽  
Edwin Bremer

The Tumor Necrosis Factor Receptor Superfamily (TNFRSF) is a large and important immunoregulatory family that provides crucial co-stimulatory signals to many if not all immune effector cells. Each co-stimulatory TNFRSF member has a distinct expression profile and a unique functional impact on various types of cells and at different stages of the immune response. Correspondingly, exploiting TNFRSF-mediated signaling for cancer immunotherapy has been a major field of interest, with various therapeutic TNFRSF-exploiting anti-cancer approaches such as 4-1BB and CD27 agonistic antibodies being evaluated (pre)clinically. A further application of TNFRSF signaling is the incorporation of the intracellular co-stimulatory domain of a TNFRSF into so-called Chimeric Antigen Receptor (CAR) constructs for CAR-T cell therapy, the most prominent example of which is the 4-1BB co-stimulatory domain included in the clinically approved product Kymriah. In fact, CAR-T cell function can be clearly influenced by the unique co-stimulatory features of members of the TNFRSF. Here, we review a select group of TNFRSF members (4-1BB, OX40, CD27, CD40, HVEM, and GITR) that have gained prominence as co-stimulatory domains in CAR-T cell therapy and illustrate the unique features that each confers to CAR-T cells.


Author(s):  
Zhixiong Wang ◽  
Qian Liu ◽  
Na Risu ◽  
Jiayu Fu ◽  
Yan Zou ◽  
...  

Chimeric antigen receptor (CAR) T cell therapy still faces the challenge of immunosuppression when treating solid tumors. TGF-β is one of the critical factors in the tumor microenvironment to help tumors escape surveillance by the immune system. Here we tried using the combination of a small molecule inhibitor of TGF-β receptor I, Galunisertib, and CAR T cells to explore whether Galunisertib could enhance CAR T cell function against solid tumor cells. In vitro experiments showed Galunisertib could significantly enhance the specific cytotoxicity of both CD133- and HER2-specific CAR T cells. However, Galunisertib had no direct killing effect on target cells. Galunisertib significantly increased the cytokine secretion of CAR T cells and T cells that do not express CAR (Nontransfected T cells). Galunisertib did not affect the proliferation of T cells, the antigen expression on target cells and CD69 on CAR T cells. We found that TGF-β was secreted by T cells themselves upon activation, and Galunisertib could reduce TGF-β signaling in CAR T cells. Our findings can provide the basis for further preclinical and clinical studies of the combination of Galunisertib and CAR T cells in the treatment of solid tumors.


2019 ◽  
Vol 11 (499) ◽  
pp. eaau5907 ◽  
Author(s):  
Katrin Mestermann ◽  
Theodoros Giavridis ◽  
Justus Weber ◽  
Julian Rydzek ◽  
Silke Frenz ◽  
...  

Immunotherapy with chimeric antigen receptor (CAR)–engineered T cells can be effective against advanced malignancies. CAR T cells are “living drugs” that require technologies to enable physicians (and patients) to maintain control over the infused cell product. Here, we demonstrate that the tyrosine kinase inhibitor dasatinib interferes with the lymphocyte-specific protein tyrosine kinase (LCK) and thereby inhibits phosphorylation of CD3ζ and ζ-chain of T cell receptor–associated protein kinase 70 kDa (ZAP70), ablating signaling in CAR constructs containing either CD28_CD3ζ or 4-1BB_CD3ζ activation modules. As a consequence, dasatinib induces a function-off state in CD8+ and CD4+ CAR T cells that is of immediate onset and can be sustained for several days without affecting T cell viability. We show that treatment with dasatinib halts cytolytic activity, cytokine production, and proliferation of CAR T cells in vitro and in vivo. The dose of dasatinib can be titrated to achieve partial or complete inhibition of CAR T cell function. Upon discontinuation of dasatinib, the inhibitory effect is rapidly and completely reversed, and CAR T cells resume their antitumor function. The favorable pharmacodynamic attributes of dasatinib can be exploited to steer the activity of CAR T cells in “function-on-off-on” sequences in real time. In a mouse model of cytokine release syndrome (CRS), we demonstrated that a short treatment course of dasatinib, administered early after CAR T cell infusion, protects a proportion of mice from otherwise fatal CRS. Our data introduce dasatinib as a broadly applicable pharmacologic on/off switch for CAR T cells.


2021 ◽  
Vol 9 (10) ◽  
pp. e003354
Author(s):  
Emiliano Roselli ◽  
Justin C Boucher ◽  
Gongbo Li ◽  
Hiroshi Kotani ◽  
Kristen Spitler ◽  
...  

BackgroundCo-stimulatory signals regulate the expansion, persistence, and function of chimeric antigen receptor (CAR) T cells. Most studies have focused on the co-stimulatory domains CD28 or 4-1BB. CAR T cell persistence is enhanced by 4-1BB co-stimulation leading to nuclear factor kappa B (NF-κB) signaling, while resistance to exhaustion is enhanced by mutations of the CD28 co-stimulatory domain.MethodsWe hypothesized that a third-generation CAR containing 4-1BB and CD28 with only PYAP signaling motif (mut06) would provide beneficial aspects of both. We designed CD19-specific CAR T cells with either 4-1BB or mut06 together with the combination of both and evaluated their immune-phenotype, cytokine secretion, real-time cytotoxic ability and polyfunctionality against CD19-expressing cells. We analyzed lymphocyte-specific protein tyrosine kinase (LCK) recruitment by the different constructs by immunoblotting. We further determined their ability to control growth of Raji cells in NOD scid gamma (NSG) mice. We also engineered bi-specific CARs against CD20/CD19 combining 4-1BB and mut06 and performed repeated in vitro antigenic stimulation experiments to evaluate their expansion, memory phenotype and phenotypic (PD1+CD39+) and functional exhaustion. Bi-specific CAR T cells were transferred into Raji or Nalm6-bearing mice to study their ability to eradicate CD20/CD19-expressing tumors.ResultsCo-stimulatory domains combining 4-1BB and mut06 confers CAR T cells with an increased central memory phenotype, expansion, and LCK recruitment to the CAR. This enhanced function was dependent on the positioning of the two co-stimulatory domains. A bi-specific CAR targeting CD20/CD19, incorporating 4-1BB and mut06 co-stimulation, showed enhanced antigen-dependent in vitro expansion with lower exhaustion-associated markers. Bi-specific CAR T cells exhibited improved in vivo antitumor activity with increased persistence and decreased exhaustion.ConclusionThese results demonstrate that co-stimulation combining 4-1BB with an optimized form of CD28 is a valid approach to optimize CAR T cell function. Cells with both mono-specific and bi-specific versions of this design showed enhanced in vitro and in vivo features such as expansion, persistence and resistance to exhaustion. Our observations validate the approach and justify clinical studies to test the efficacy and safety of this CAR in patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lorenzo Lindo ◽  
Lauren Hanna Wilkinson ◽  
Kevin Anthony Hay

T-cells genetically engineered to express a chimeric antigen receptor (CAR) have shown remarkable results in patients with B-cell malignancies, including B-cell acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and mantle cell lymphoma, with some promising efficacy in patients with multiple myeloma. However, the efficacy of CAR T-cell therapy is still hampered by local immunosuppression and significant toxicities, notably cytokine release syndrome (CRS) and neurotoxicity. The tumor microenvironment (TME) has been identified to play a major role in preventing durable responses to immunotherapy in both solid and hematologic malignancies, with this role exaggerated in solid tumors. The TME comprises a diverse set of components, including a heterogeneous population of various cells and acellular elements that collectively contribute towards the interplay of pro-immune and immunosuppressive signaling. In particular, macrophages, myeloid-derived suppressor cells, regulatory T-cells, and cell-free factors such as cytokines are major contributors to local immunosuppression in the TME of patients treated with CAR T-cells. In order to create a more favorable niche for CAR T-cell function, armored CAR T-cells and other combinatorial approaches are being explored for potential improved outcomes compared to conventional CAR T-cell products. While these strategies may potentiate CAR T-cell function and efficacy, they may paradoxically increase the risk of adverse events due to increased pro-inflammatory signaling. Herein, we discuss the mechanisms by which the TME antagonizes CAR T-cells and how innovative immunotherapy strategies are being developed to address this roadblock. Furthermore, we offer perspective on how these novel approaches may affect the risk of adverse events, in order to identify ways to overcome these barriers and expand the clinical benefits of this treatment modality in patients with diverse cancers. Precise immunomodulation to allow for improved tumor control while simultaneously mitigating the toxicities seen with current generation CAR T-cells is integral for the future application of more effective CAR T-cells against other malignancies.


Sign in / Sign up

Export Citation Format

Share Document