scholarly journals The Role of Cutinsomes in Plant Cuticle Formation

Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1778 ◽  
Author(s):  
Dariusz Stępiński ◽  
Maria Kwiatkowska ◽  
Agnieszka Wojtczak ◽  
Justyna Teresa Polit ◽  
Eva Domínguez ◽  
...  

The cuticle commonly appears as a continuous lipophilic layer located at the outer epidermal cell walls of land plants. Cutin and waxes are its main components. Two methods for cutin synthesis are considered in plants. One that is based on enzymatic biosynthesis, in which cutin synthase (CUS) is involved, is well-known and commonly accepted. The other assumes the participation of specific nanostructures, cutinsomes, which are formed in physicochemical self-assembly processes from cutin precursors without enzyme involvement. Cutinsomes are formed in ground cytoplasm or, in some species, in specific cytoplasmic domains, lipotubuloid metabolons (LMs), and are most probably translocated via microtubules toward the cuticle-covered cell wall. Cutinsomes may additionally serve as platforms transporting cuticular enzymes. Presumably, cutinsomes enrich the cuticle in branched and cross-linked esterified polyhydroxy fatty acid oligomers, while CUS1 can provide both linear chains and branching cutin oligomers. These two systems of cuticle formation seem to co-operate on the surface of aboveground organs, as well as in the embryo and seed coat epidermis. This review focuses on the role that cutinsomes play in cuticle biosynthesis in S. lycopersicum, O. umbellatum and A. thaliana, which have been studied so far; however, these nanoparticles may be commonly involved in this process in different plants.

2014 ◽  
Vol 83 (4) ◽  
pp. 349-362 ◽  
Author(s):  
Alicja Banasiak

<p>Colonization of terrestrial ecosystems by the first land plants, and their subsequent expansion and diversification, were crucial for the life on the Earth. However, our understanding of these processes is still relatively poor. Recent intensification of studies on various plant organisms have identified the plant cell walls are those structures, which played a key role in adaptive processes during the evolution of land plants. Cell wall as a structure protecting protoplasts and showing a high structural plasticity was one of the primary subjects to changes, giving plants the new properties and capabilities, which undoubtedly contributed to the evolutionary success of land plants.</p><p>In this paper, the current state of knowledge about some main components of the cell walls (cellulose, hemicelluloses, pectins and lignins) and their evolutionary alterations, as preadaptive features for the land colonization and the plant taxa diversification, is summarized. Some aspects related to the biosynthesis and modification of the cell wall components, with particular emphasis on the mechanism of transglycosylation, are also discussed. In addition, new surprising discoveries related to the composition of various cell walls, which change how we perceive their evolution, are presented, such as the presence of lignin in red algae or MLG (1→3),(1→4)-β-D-glucan in horsetails. Currently, several new and promising projects, regarding the cell wall, have started, deciphering its structure, composition and metabolism in the evolutionary context. That additional information will allow us to better understand the processes leading to the terrestrialization and the evolution of extant land plants.</p>


1973 ◽  
Vol 136 (4) ◽  
pp. 871-876 ◽  
Author(s):  
Raymond G. Anderson ◽  
L. Julia Douglas ◽  
Helen Hussey ◽  
James Baddiley

Phosphoenolpyruvate–UDP-N-acetylglucosamine enolpyruvyltransferase, UDP-N-acetylglucosamine pyrophosphorylase and CDP-glycerol pyrophosphorylase activities were demonstrated in soluble extracts from Bacillus licheniformis A.T.C.C. 9945. The effect of various nucleotides, sugar nucleotides and sugar phosphates on the nucleotide pyrophosphorylases was investigated. UDP-N-acetylglucosamine pyrophosphorylase was inhibited by UDP-MurAc-pentapeptide (UDP-N-acetylmuramyl-l-alanyl-d-glutamyl- meso-diaminopimelyl-d-alanyl -d-alanine) and CDP-glycerol. CDP-glycerol pyrophosphorylase was inhibited by UDP-MurAc-pentapeptide and stimulated by UDP-N-acetylglucosamine. Interaction between a precursor of one cell-wall polymer and an enzyme involved in the synthesis of a precursor of a second polymer has therefore been demonstrated. The possible role of such interaction in the control of bacterial cell-wall synthesis is discussed. Of the other compounds investigated mono- and di-nucleotides were shown to be inhibitory, indicating that nucleotide pyrophosphorylase activities may be influenced by the energy charge of the cell.


1966 ◽  
Vol 12 (1) ◽  
pp. 105-108 ◽  
Author(s):  
K. Jane Carson ◽  
R. G. Eagon

Electron micrographs of thin sections of normal cells of Pseudomonas aeruginosa showed the cell walls to be convoluted and to be composed of two distinct layers. Electron micrographs of thin sections of lysozyme-treated cells of P. aeruginosa showed (a) that the cell walls lost much of their convoluted nature; (b) that the layers of the cell walls became diffuse and less distinct; and (c) that the cell walls became separated from the protoplasts over extensive cellular areas. These results suggest that the peptidoglycan component of the unaltered cell walls of P. aeruginosa is sensitive to lysozyme. Furthermore, it appears that the peptidoglycan component is not solely responsible for the rigidity of the cell walls of Gram-negative bacteria.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 354 ◽  
Author(s):  
Yves Hsieh ◽  
Philip Harris

Xylans with a variety of structures have been characterised in green algae, including chlorophytes (Chlorophyta) and charophytes (in the Streptophyta), and red algae (Rhodophyta). Substituted 1,4-β-d-xylans, similar to those in land plants (embryophytes), occur in the cell wall matrix of advanced orders of charophyte green algae. Small proportions of 1,4-β-d-xylans have also been found in the cell walls of some chlorophyte green algae and red algae but have not been well characterised. 1,3-β-d-Xylans occur as triple helices in microfibrils in the cell walls of chlorophyte algae in the order Bryopsidales and of red algae in the order Bangiales. 1,3;1,4-β-d-Xylans occur in the cell wall matrix of red algae in the orders Palmariales and Nemaliales. In the angiosperm Arabidopsis thaliana, the gene IRX10 encodes a xylan 1,4-β-d-xylosyltranferase (xylan synthase), and, when heterologously expressed, this protein catalysed the production of the backbone of 1,4-β-d-xylans. An orthologous gene from the charophyte green alga Klebsormidium flaccidum, when heterologously expressed, produced a similar protein that was also able to catalyse the production of the backbone of 1,4-β-d-xylans. Indeed, it is considered that land plant xylans evolved from xylans in ancestral charophyte green algae. However, nothing is known about the biosynthesis of the different xylans found in chlorophyte green algae and red algae. There is, thus, an urgent need to identify the genes and enzymes involved.


Author(s):  
Hilton H. Mollenhauer

Cell walls are fundamentally involved in many aspects of plant biology including the morphology, growth, and development of plant cells and the interactions between plant hosts and their pathogens. Intuitively, one can recognize that these wall properties result from the sum total of the various components of which the wall is composed and that there are classes of substances each of which impart a characteristic property to the cell wall.


1985 ◽  
Vol 63 (12) ◽  
pp. 2221-2230 ◽  
Author(s):  
Ueli Brunner ◽  
Rosmarie Honegger

Cell walls of cultured lichen phycobionts of the genera Coccomyxa, Elliptochloris, Myrmecia, Pseudochlorella, Trebouxia, and Trentepohlia were investigated with cytological and chemical methods with regard to the presence or absence of trilaminar sheaths and (or) resistant biopolymers. Trilaminar cell wall layers occurred in Coccomyxa, Elliptochloris, Myrmecia, and (less distinctly) Pseudochlorella species. A biopolymer highly resistant to nonoxidative degradation by phosphoric acid occurred only in the isolated and vigorously extracted cell walls of Coccomyxa and Elliptochloris species. The walls of all the other phycobionts, including Myrmecia and Pseudochlorella, were totally degraded, showing that a trilaminar wall layer is not conclusive evidence for the presence of a resistant cell wall polymer. The infrared absorption spectra of the degradation-resistant cell wall polymer of Coccomyxa and Elliptochloris species were not fully identical with those of natural sporopollenins. When the widely used, but chemically less appropriate acetolysis method was applied to either entire cells or isolated but not fully extracted cell walls of Coccomyxa, Elliptochloris, Myrmecia, Pseudochlorella, Trebouxia, and Trentepohlia species, they all yielded acetolysis-resistant residues whose infrared spectra resembled natural sporopollenin.


1984 ◽  
Vol 16 (2) ◽  
pp. 129-144 ◽  
Author(s):  
J. König ◽  
E. Peveling

AbstractThe cell wall composition of several species of the lichen phycobionts Trebouxia and Pseudotrebouxia has been investigated using gas chromatography, thin layer chromatography and infrared absorption spectrophotometry. In addition cell wall components (cellulose, non-cellulosic polysaccharides, sporopollenin, protein) were localized with cytochemical methods at the EM- level. The cell walls of Trebouxia and Pseudotrebouxia consist of several layers. In Trebouxia the inner layer (Si) consists mainly of cellulose, then followed by a non-cellulosic polysaccharide layer (S2), a sporopollenin-layer (S3) and an outer layer consisting again of a non-cellulosic polysaccharide (S4). In addition Trebouxia is surrounded by a sheath (a polysaccharide with species-specific terminal residues). In Pseudotrebouxia the cell wall is similarly constructed compared to Trebouxia, however, the sheath is lacking and the S4 layer contains a polysaccharide with species-specific terminal sugar residues. The role of the different cell wall constituents for the recognition mechanism between the lichen symbionts is discussed.


2009 ◽  
Vol 8 (11) ◽  
pp. 1626-1636 ◽  
Author(s):  
Enrico Cabib

ABSTRACT Previous work, using solubilization of yeast cell walls by carboxymethylation, before or after digestion with β(1-3)- or β(1-6)glucanase, followed by size chromatography, showed that the transglycosylases Crh1p and Crh2p/Utr2p were redundantly required for the attachment of chitin to β(1-6)glucan. With this technique, crh1Δ crh2Δ mutants still appeared to contain a substantial percentage of chitin linked to β(1-3)glucan. Two novel procedures have now been developed for the analysis of polysaccharide cross-links in the cell wall. One is based on the affinity of curdlan, a β(1-3)glucan, for β(1-3)glucan chains in carboxymethylated cell walls. The other consists of in situ deacetylation of cell wall chitin, generating chitosan, which can be extracted with acetic acid, either directly (free chitosan) or after digestion with different glucanases (bound chitosan). Both methodologies indicated that all of the chitin in crh1Δ crh2Δ strains is free. Reexamination of the previously used procedure revealed that the β(1-3)glucanase preparation used (zymolyase) is contaminated with a small amount of endochitinase, which caused erroneous results with the double mutant. After removing the chitinase from the zymolyase, all three procedures gave coincident results. Therefore, Crh1p and Crh2p catalyze the transfer of chitin to both β(1-3)- and β(1-6)glucan, and the biosynthetic mechanism for all chitin cross-links in the cell wall has been established.


2016 ◽  
Vol 7 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Myriam M. L. Grundy ◽  
Frédéric Carrière ◽  
Alan R. Mackie ◽  
David A. Gray ◽  
Peter J. Butterworth ◽  
...  

Intact cell walls of almond prevent lipase penetration thus hindering lipid digestion.


2020 ◽  
Vol 21 (17) ◽  
pp. 6094
Author(s):  
Fabien Baldacci-Cresp ◽  
Julien Le Roy ◽  
Brigitte Huss ◽  
Cédric Lion ◽  
Anne Créach ◽  
...  

Lignin is present in plant secondary cell walls and is among the most abundant biological polymers on Earth. In this work we investigated the potential role of the UGT72E gene family in regulating lignification in Arabidopsis. Chemical determination of floral stem lignin contents in ugt72e1, ugt72e2, and ugt72e3 mutants revealed no significant differences compared to WT plants. In contrast, the use of a novel safranin O ratiometric imaging technique indicated a significant increase in the cell wall lignin content of both interfascicular fibers and xylem from young regions of ugt72e3 mutant floral stems. These results were globally confirmed in interfascicular fibers by Raman microspectroscopy. Subsequent investigation using a bioorthogonal triple labelling strategy suggested that the augmentation in lignification was associated with an increased capacity of mutant cell walls to incorporate H-, G-, and S-monolignol reporters. Expression analysis showed that this increase was associated with an up-regulation of LAC17 and PRX71, which play a key role in lignin polymerization. Altogether, these results suggest that UGT72E3 can influence the kinetics of lignin deposition by regulating monolignol flow to the cell wall as well as the potential of this compartment to incorporate monomers into the growing lignin polymer.


Sign in / Sign up

Export Citation Format

Share Document