scholarly journals GUN1 and Plastid RNA Metabolism: Learning from Genetics

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2307
Author(s):  
Luca Tadini ◽  
Nicolaj Jeran ◽  
Paolo Pesaresi

GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for the correct development and functioning of chloroplasts. Multiple genetic and biochemical findings indicate that GUN1 is important for protein homeostasis in the chloroplast; however, a clear and unified view of GUN1′s role in the chloroplast is still missing. Recently, GUN1 has been reported to modulate the activity of the nucleus-encoded plastid RNA polymerase (NEP) and modulate editing of plastid RNAs upon activation of retrograde communication, revealing a major role of GUN1 in plastid RNA metabolism. In this opinion article, we discuss the recently identified links between plastid RNA metabolism and retrograde signaling by providing a new and extended concept of GUN1 activity, which integrates the multitude of functional genetic interactions reported over the last decade with its primary role in plastid transcription and transcript editing.

2019 ◽  
Author(s):  
Luca Tadini ◽  
Carlotta Peracchio ◽  
Andrea Trotta ◽  
Monica Colombo ◽  
Ilaria Mancini ◽  
...  

AbstractCorrect chloroplast development and function require coordinated expression of chloroplast and nuclear genes. This is achieved through chloroplast signals that modulate nuclear gene expression in accordance with the chloroplast’s needs. Genetic evidence indicates that GUN1, a chloroplast-localized pentatricopeptide-repeat (PPR) protein with a C-terminal Small MutS-Related (SMR) domain, is involved in integrating multiple developmental and stress-related signals in both young seedlings and adult leaves. Recently, GUN1 was found to interact physically with factors involved in chloroplast protein homeostasis, and with enzymes of tetrapyrrole biosynthesis in adult leaves that function in various retrograde signaling pathways. Here we show that, following perturbation of chloroplast protein homeostasis i) by growth in lincomycin-containing medium, or ii) in mutants defective in either the FtsH protease complex (ftsh), plastid ribosome activity (prps21-1 and prpl11-1) or plastid protein import and folding (cphsp70-1), GUN1 influences NEP-dependent transcript accumulation during cotyledon greening and also intervenes in chloroplast protein import.


2017 ◽  
Vol 114 (33) ◽  
pp. 8883-8888 ◽  
Author(s):  
Nuria Andrés-Colás ◽  
Qiang Zhu ◽  
Mizuki Takenaka ◽  
Bert De Rybel ◽  
Dolf Weijers ◽  
...  

Recent identification of several different types of RNA editing factors in plant organelles suggests complex RNA editosomes within which each factor has a different task. However, the precise protein interactions between the different editing factors are still poorly understood. In this paper, we show that the E+-type pentatricopeptide repeat (PPR) protein SLO2, which lacks a C-terminal cytidine deaminase-like DYW domain, interacts in vivo with the DYW-type PPR protein DYW2 and the P-type PPR protein NUWA in mitochondria, and that the latter enhances the interaction of the former ones. These results may reflect a protein scaffold or complex stabilization role of NUWA between E+-type PPR and DYW2 proteins. Interestingly, DYW2 and NUWA also interact in chloroplasts, and DYW2-GFP overexpressing lines show broad editing defects in both organelles, with predominant specificity for sites edited by E+-type PPR proteins. The latter suggests a coordinated regulation of organellar multiple site editing through DYW2, which probably provides the deaminase activity to E+ editosomes.


Author(s):  
Hiroshi Yamamoto ◽  
Nozomi Sato ◽  
Toshiharu Shikanai

Abstract The chloroplast NADH dehydrogenase-like (NDH) complex mediates ferredoxin-dependent plastoquinone reduction in the thylakoid membrane. In angiosperms, chloroplast NDH is composed of five subcomplexes and further forms a supercomplex with PSI. Subcomplex A (SubA) mediates the electron transport and consists of eight subunits encoded by both plastid and nuclear genomes. The assembly of SubA in the stroma has been extensively studied but it is unclear how SubA is incorporated into the membrane embedded part of the NDH complex. Here, we isolated a novel Arabidopsis mutant chlororespiratory reduction 16 (crr16) defective in NDH activity. CRR16 encodes a chloroplast-localized P-class pentatricopeptide repeat (PPR) protein conserved in angiosperms. Transcript analysis of plastid-encoded ndh genes indicated that CRR16 was responsible for the efficient splicing of the group II intron in the ndhA transcript, which encodes a membrane-embedded subunit localized to the connecting site between SubA and membrane subcomplex (SubM). To analyze the roles of NdhA in the assembly and stability of the NDH complex, the homoplastomic knockout plant of ndhA (ΔndhA) was generated in tobacco (Nicotiana tabacum). Biochemical analyses of crr16 and ΔndhA plants indicated that NdhA was essential for stabilizing SubA and SubE but not for the accumulation of the other three subcomplexes. Furthermore, the crr16 mutant accumulated the SubA assembly intermediates in the stroma more than that in the wild type. These results suggest that NdhA biosynthesis is essential for the incorporation of SubA into the membrane-embedded part of the NDH complex at the final assembly step of the NDH-PSI supercomplex.


2018 ◽  
Vol 5 (1) ◽  
pp. 93-115
Author(s):  
Miloš Stamenković

SummarySports photography undoubtedly has a significant place in sports press and publicism. It’s main and primary role is to present sports to the readers as art, which it is. Sport is characterized by dynamic and varied movements, and the main role of sports photography is reflected in the fact that it is in this way that sport shows its essence. Having in mind that photography tells more than a thousand words it sends a clear message to the reader as well to people who are informed about events via sports portals. Sports photography is a multidimensional art for many reasons. When we say “multi”, it primarily refers to a wider range that sports photography has to offer, which means sports photography is not only directed at presenting athletes on the move and the main actors who contribute to achieving the results by their engagement – it also has the role of sports “psychophotography” which is an analysis and capture of the emotional reaction of an athlete after winning or losing from the opposing team.


Author(s):  
A.V. GOLUBEV ◽  

The diffusion of innovations is described as a process in a number of scientific papers. At the same time, the causes of this process have not been sufficiently studied. The author’s goal is to consider the main regularities, under which the life cycle of innovations begins, and propose measures to enhance diffusion in modern conditions. As a scientific hypothesis, the author accepts the postulate about the primary role of the obolescence of attracted innovations in this process. The analysis revealed not only the economic proportions that initiate the start of innovation promotion, but also the influence on the diffusion rate of the obsolescence degree of innovations and the market share occupied by the new product. Methodological approaches have been developed to determine economic efficiency depending on the moment of technological change-over, as well as to determine the absolute and relative speed of innovation diffusion. Sociological studies were conducted to determine the state of innovation development and the time lag between obtaining information about an innovation and its practical implementation. The author presents his “Agroopyt” information system developed to disseminate knowledge in the agricultural sphere and ensure technology transfer in agriculture. Digital methods provide for significant accelerateion of the diffusion of innovations and expand its scope.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 787-797
Author(s):  
Lizzie Cribb ◽  
Lisa N Hall ◽  
Jane A Langdale

Abstract Maize leaf blades differentiate dimorphic photosynthetic cell types, the bundle sheath and mesophyll, between which the reactions of C4 photosynthesis are partitioned. Leaf-like organs of maize such as husk leaves, however, develop a C3 pattern of differentiation whereby ribulose bisphosphate carboxylase (RuBPCase) accumulates in all photosynthetic cell types. The Golden2 (G2) gene has previously been shown to play a role in bundle sheath cell differentiation in C4 leaf blades and to play a less well-defined role in C3 maize tissues. To further analyze G2 gene function in maize, four g2 mutations have been characterized. Three of these mutations were induced by the transposable element Spm. In g2-bsd1-m1 and g2-bsd1-s1, the element is inserted in the second intron and in g2-pg14 the element is inserted in the promoter. In the fourth case, g2-R, four amino acid changes and premature polyadenylation of the G2 transcript are observed. The phenotypes conditioned by these four mutations demonstrate that the primary role of G2 in C4 leaf blades is to promote bundle sheath cell chloroplast development. C4 photosynthetic enzymes can accumulate in both bundle sheath and mesophyll cells in the absence of G2. In C3 tissue, however, G2 influences both chloroplast differentiation and photosynthetic enzyme accumulation patterns. On the basis of the phenotypic data obtained, a model that postulates how G2 acts to facilitate C4 and C3 patterns of tissue development is proposed.


Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 1831-1839
Author(s):  
Emily Harms ◽  
Tehyen Chu ◽  
Gwénola Henrion ◽  
Sidney Strickland

Abstract The grauzone and cortex genes are required for the completion of meiosis in Drosophila oocytes. The grauzone gene encodes a C2H2-type zinc-finger transcription factor that binds to the cortex promoter and is necessary for high-level activation of cortex transcription. Here we define the region of the cortex promoter to which Grauzone binds and show that the binding occurs through the C-terminal, zinc-finger-rich region of the protein. Mutations in two out of the five grauzone alleles result in single amino acid changes within different zinc-finger motifs. Both of these mutations result in the inability of Grauzone to bind DNA effectively. To determine the mechanism by which Grauzone regulates meiosis, transgenic flies were produced with an extra copy of the cortex gene in homozygous grauzone females. This transgene rescued the meiosis arrest of embryos from these mutants and allowed their complete development, indicating that activation of cortex transcription is the primary role of Grauzone during Drosophila oogenesis. These experiments further define a new transcriptional pathway that controls the meiotic cell cycle in Drosophila oocytes.


ACS Catalysis ◽  
2021 ◽  
pp. 6596-6601
Author(s):  
Alexander Bagger ◽  
Hao Wan ◽  
Ifan E. L. Stephens ◽  
Jan Rossmeisl

Sign in / Sign up

Export Citation Format

Share Document