scholarly journals ECOLOGICAL AND ECONOMICAL SUBSTATIATION OF PRODUCTION OF HYDROGEN

Author(s):  
Nataliia Kovalenko ◽  
Taras Hutsol ◽  
Oleksander Labenko ◽  
Szymon Glowacki ◽  
Dmytro Sorokin

Hydrogen production from biomass may become one of the leading areas of bioenergy in Ukraine soon.Currently, the main direction of biomass energy production in Ukraine is the production of thermal energy for distributed heat supply of enterprises and private households by burning biomass of wood and agricultural origin. Nowadays in Ukraine, there is a technology for the production of biohydrogen. We calculated the environmental and economic effects of hydrogen production as a source of energy. We have come up with the following conclusion that if there is a demand for the final product, hydrogen production will be attractive from economic standpoint and will not require a green tariff or other support from the government.The market price of biohydrogen will be $ 4-5 per kg and will be comparable to that which the European Union aims to achieve.We assume that hydrogen may be a cleaner source of energy for end users, especially in the transport sector in the future.One of the main issues of Ukraine's possible participation in Europe's hydrogen energy program as a supplier and producer of renewable hydrogen is the possibility of its technically safe and cost-effective transportation to EU countries.As the main hypothesis considered transportation of hydrogen using the gas transmission system of Ukraine as part of a mixture with natural gas. Calculations show that, of course, obtaining energy from hydrogen, even in mass production, will be more expensive than alternative traditional and non-traditional methods. The development of this technology, in any case, is promising in terms of the development of energy independence and environmental development of states. The effect of scale in mass production of hydrogen energy should also work, which will significantly reduce the cost of this technology.  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 718
Author(s):  
Alexandra Kopteva ◽  
Leonid Kalimullin ◽  
Pavel Tcvetkov ◽  
Amilcar Soares

Renewable energy is considered the one of the most promising solutions to meet sustainable development goals in terms of climate change mitigation. Today, we face the problem of further scaling up renewable energy infrastructure, which requires the creation of reliable energy storages, environmentally friendly carriers, like hydrogen, and competitive international markets. These issues provoke the involvement of resource-based countries in the energy transition, which is questionable in terms of economic efficiency, compared to conventional hydrocarbon resources. To shed a light on the possible efficiency of green hydrogen production in such countries, this study is aimed at: (1) comparing key Russian trends of green hydrogen development with global trends, (2) presenting strategic scenarios for the Russian energy sector development, (3) presenting a case study of Russian hydrogen energy project «Dyakov Ust-Srednekanskaya HPP» in Magadan region. We argue that without significant changes in strategic planning and without focus on sustainable solutions support, the further development of Russian power industry will be halted in a conservative scenario with the limited presence of innovative solutions in renewable energy industries. Our case study showed that despite the closeness to Japan hydrogen market, economic efficiency is on the edge of zero, with payback period around 17 years. The decrease in project capacity below 543.6 MW will immediately lead to a negative NPV. The key reason for that is the low average market price of hydrogen ($14/kg), which is only a bit higher than its production cost ($12.5/kg), while transportation requires about $0.96/kg more. Despite the discouraging results, it should be taken into account that such strategic projects are at the edge of energy development. We see them as an opportunity to lead transnational energy trade of green hydrogen, which could be competitive in the medium term, especially with state support.


Author(s):  
Halil Berberoglu ◽  
Laurent Pilon ◽  
Jenny Jay

This study reports a factor 5.5 increase in hydrogen production of Anabaena variabilis ATCC 29413 using Allen-Arnon medium compared with BG-11 and BG-110 media. The results were obtained with a flat panel photobioreactor made of acrylic and operated in two stages at 30°C. Stage 1 aims at converting carbon dioxide into biomass by photosynthesis while Stage 2 aims at producing hydrogen. During Stage 1, the photobioreactor is irradiated with 65 μmol/m2/s of light and sparged with a mixture of air and carbon dioxide. During Stage 2, irradiance is increased to 150 μmol/m2/s and the photobioreactor is sparged with pure argon. The parameters continuously monitored are (1) the cyanobacteria concentration, (2) the pH, (3) the dissolved oxygen concentration, (4) the nitrate and (5) the ammonia concentrations in the medium, and (6) the hydrogen concentration in the effluent gas. The three media BG-11, BG-110, and Allen-Arnon are tested under otherwise similar conditions. The light to biomass energy conversion efficiency varied between 5.5 and 10.5% and was similar for all media. The cyanobacteria concentrations during Stage 2 were 1.10 and 1.17 kg dry cell/m3 with BG-11 and Allen-Arnon media, respectively, while it could not exceed 0.76 kg dry cell/m3 with medium BG-110. The average specific hydrogen production rates were about 1 and 0.9 L/kg dry cell/h in media BG-11 and BG-110, respectively. In contrast, it was about 5.6 L/kg dry cell/h in Allen-Arnon medium. The maximum light to hydrogen energy conversion efficiencies achieved were 0.26%, 0.16%, and 1.32% for BG-11, BG-110, and Allen-Arnon media, respectively. The larger specific hydrogen production rates, efficiencies, and cyanobacteria concentrations achieved using Allen-Arnon medium are attributed to the presence of vanadium, and higher concentrations of molybdenum, magnesium, calcium, sodium, and potassium in the medium.


2019 ◽  
Vol 3 (1) ◽  
pp. 6 ◽  
Author(s):  
Marina Holgado ◽  
David Alique

Hydrogen, as an energy carrier, can take the main role in the transition to a new energy model based on renewable sources. However, its application in the transport sector is limited by its difficult storage and the lack of infrastructure for its distribution. On-board H2 production is proposed as a possible solution to these problems, especially in the case of considering renewable feedstocks such as bio-ethanol or bio-methane. This work addresses a first approach for analyzing the viability of these alternatives by using Pd-membrane reactors in polymer electrolyte membrane fuel cell (PEM-FC) vehicles. It has been demonstrated that the use of Pd-based membrane reactors enhances hydrogen productivity and provides enough pure hydrogen to feed the PEM-FC requirements in one single step. Both alternatives seem to be feasible, although the methane-based on-board hydrogen production offers some additional advantages. For this case, it is possible to generate 1.82 kmol h−1 of pure H2 to feed the PEM-FC while minimizing the CO2 emissions to 71 g CO2/100 km. This value would be under the future emissions limits proposed by the European Union (EU) for year 2020. In this case, the operating conditions of the on-board reformer are T = 650 °C, Pret = 10 bar and H2O/CH4 = 2.25, requiring 1 kg of catalyst load and a membrane area of 1.76 m2.


2020 ◽  
Vol 3 (1) ◽  
pp. 9-20
Author(s):  
Tomasz Szeszko

AbstractThe publication analyses the possibility of separating hydrogen from coke oven gas for further use in the transport sector in the FCEV segment (fuel cell electric vehicles). The construction of the separation installation using the PSA (pressure swing adsorption) method guaranteeing high purity of hydrogen was assumed, according to the requirements of ISO 14678-2:2012 and SAE J-2719 standards. The PSA technology is widely used in industrial gas separation processes, however, due to the composition of coal gas, which apart from hydrogen and methane consists of impurities in the form of hydrocarbons, sulphur compounds, chlorine, etc., it needs to be adapted to the needs of separation of hydrogen from coke oven gas. The study shows the total possible hydrogen production potential and then, in agreement with the JSW Group’s Coking Plants, limits were set for hydrogen production in PSA technology at Przyjaźń, Jadwiga and Radlin Coking Plants, without the negative impact of the separation installation on technological processes associated with coke oven battery firing, operation of existing power units, gas compression systems and taking into account securing the needs of external customers for coke oven gas. Additionally, in order to determine the Polish market demand for high-purity hydrogen, an analysis was carried out which indicates that in 2030 the share of FCEVs will be 2%, so the demand for hydrogen in this segment would be negligible compared to the supply of hydrogen produced in a large-scale installation. Due to the need to build such a market and adapt the parameters of the installation to the variable parameters of coke oven gas, the pilot scale of the installation and the target location of the installation at the Przyjaźń Coking Plant were indicated as the most optimal.


2022 ◽  
Author(s):  
Yang Bai ◽  
Chao Li ◽  
Lunjie Liu ◽  
Yuichi Yamaguchi ◽  
Bahri Mounib ◽  
...  

The production of hydrogen from water via solar water splitting is a potential method to overcome the intermittency of the Sun’s energy by storing it as a chemical fuel. Inorganic semiconductors have been studied extensively as photocatalysts for overall water splitting, but polymer photocatalysts are also receiving growing attention. So far, most studies involving organic polymers report hydrogen production with sacrificial electron donors, which is unsuitable for large-scale hydrogen energy production. Here we show that a linear conjugated polymer photocatalyst can be used for overall water splitting to produce stoichiometric amounts of H2 and O2. We studied a range of different metal co-catalysts in conjunction with the linear polymer photocatalyst, the homopolymer of dibenzo[b,d]thiophene sulfone (P10). Photocatalytic activity was observed for palladium/iridium oxide-loaded P10, while other co-catalysts resulted in materials that showed no activity for overall water splitting. The reaction conditions were further optimized and the overall water splitting using the IrO2-loaded P10 was found to proceed steadily for an extended period (>60 hours) after the system stabilized. These results demonstrate that conjugated polymers can act as single component photocatalytic systems for overall water splitting when loaded with suitable co-catalysts, albeit currently with low activities. Significantly, though, organic polymers can be designed to absorb a large fraction of the visible spectrum, which can be challenging with inorganic catalysts. Transient spectroscopy shows that the IrO2 co-catalyst plays an important role in the generation of the charge separated state required for water splitting, with evidence for fast hole transfer to the co-catalyst. This solid-state approach should be transferable to other polymer photocatalysts, allowing this field to move away from sacrificial hydrogen production towards overall water splitting.


2021 ◽  
pp. 1-27
Author(s):  
Haris Ishaq ◽  
Ibrahim Dincer

Abstract The increasing environmental limits and carbon emissions taxes are making is substantial to develop the efficient systems offering the effective energy utilization. This study proposed a new biomass gasification assisted configuration for renewable hydrogen production system offering efficient energy utilization. A multi-effect desalination system is employed for water desalination which is converted to the steam and fed to the entrained flow gasifier. The integrated heat recovery steam generator recovers the additional heat from the syngas to generate steam using fresh water from the desalination unit. The produced hydrogen is supplied to the multistage compression unit that stores hydrogen at high pressure. Industrial Aspen Plus software V9 version is employed for the simulation under the RK-SOAVE property method. The production of hydrogen before water gas shift reactor is 129.5 mol/s and after the water gas shift reactor is found to be 171 mol/s. The thermodynamic performance of the biomass energy-assisted system is determined through overall energetic and exergetic efficiencies that are revealed to be 40.86% and 38.63%. Numerous sensitivity studies are performance to explore the performance of the designed system and presented and discussed.


2008 ◽  
Vol 59 (4) ◽  
Author(s):  
Fred Starr ◽  
Calin-Cristian Cormos ◽  
Evangelos Tzimas ◽  
Stathis Peteves

A hydrogen energy system will require the production of hydrogen from coal-based gasification plants and its transmission through long distance pipelines at 70 � 100 bar. To overcome some problems of current gasifiers, which are limited in pressure capability, two options are explored, in-plant compression of the syngas and compression of the hydrogen at the plant exit. It is shown that whereas in-plant compression using centrifugal machines is practical, this is not a solution when compressing hydrogen at the plant exit. This is because of the low molecular weight of the hydrogen. It is also shown that if centrifugal compressors are to be used in a pipeline system, pressure drops will need to be restricted as even an advanced two-stage centrifugal compressor will be limited to a pressure ratio of 1.2. High strength steels are suitable for the in-plant compressor, but aluminium alloy will be required for a hydrogen pipeline compressor.


2016 ◽  
Vol 9 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Dionisio H. Malagón-Romero ◽  
Alexander Ladino ◽  
Nataly Ortiz ◽  
Liliana P. Green

Hydrogen is expected to play an important role as a clean, reliable and renewable energy source. A key challenge is the production of hydrogen in an economically and environmentally sustainable way on an industrial scale. One promising method of hydrogen production is via biological processes using agricultural resources, where the hydrogen is found to be mixed with other gases, such as carbon dioxide. Thus, to separate hydrogen from the mixture, it is challenging to implement and evaluate a simple, low cost, reliable and efficient separation process. So, the aim of this work was to develop a polymeric membrane for hydrogen separation. The developed membranes were made of polysulfone via phase inversion by a controlled evaporation method with 5 wt % and 10 wt % of polysulfone resulting in thicknesses of 132 and 239 micrometers, respectively. Membrane characterization was performed using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and ASTM D882 tensile test. Performance was characterized using a 23 factorial experiment using the time lag method, comparing the results with those from gas chromatography (GC). As a result, developed membranes exhibited dense microstructures, low values of RMS roughness, and glass transition temperatures of approximately 191.75 °C and 190.43 °C for the 5 wt % and 10 wt % membranes, respectively. Performance results for the given membranes showed a hydrogen selectivity of 8.20 for an evaluated gas mixture 54% hydrogen and 46% carbon dioxide. According to selectivity achieved, H2 separation from carbon dioxide is feasible with possibilities of scalability. These results are important for consolidating hydrogen production from biological processes.


Author(s):  
Yoo Sei Park ◽  
Jooyoung Lee ◽  
Myeong-Je Jang ◽  
Juchan Yang ◽  
Jae Hoon Jeong ◽  
...  

Seawater electrolysis is a promising technology for the production of hydrogen energy and seawater desalination. To produce hydrogen energy through seawater electrolysis, highly active electrocatalysts for the oxygen evolution reaction...


Sign in / Sign up

Export Citation Format

Share Document