scholarly journals A Comprehensive Review of Graphene-Based Anode Materials for Lithium-Ion Capacitors

Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1215-1245
Author(s):  
Dong Sui ◽  
Linqi Si ◽  
Changle Li ◽  
Yanliang Yang ◽  
Yongsheng Zhang ◽  
...  

Lithium-ion capacitors (LICs) are considered to be one of the most promising energy storage devices which have the potential of integrating high energy of lithium-ion batteries and high power and long cycling life of supercapacitors into one system. However, the current LICs could only provide high power density at the cost of low energy density due to the sluggish Li+ diffusion and/or low electrical conductivity of the anode materials. Moreover, the serious capacity and kinetics imbalances between anode and cathode result in not only inferior rate performance but also unsatisfactory cycling stability. Therefore, designing high-power and structure stable anode materials is of great significance for practical LICs. Under this circumstance, graphene-based materials have been intensively explored as anodes in LICs due to their unique structure and outstanding electrochemical properties and attractive achievements have been made. In this review, the recent progresses of graphene-based anode materials for LICs are systematically summarized. Their synthesis procedure, structure and electrochemical performance are discussed with a special focus on the role of graphene. Finally, the outlook and remaining challenges are presented with some constructive guidelines for future research.

2016 ◽  
Vol 4 (15) ◽  
pp. 5366-5384 ◽  
Author(s):  
Jung Kyoo Lee ◽  
Changil Oh ◽  
Nahyeon Kim ◽  
Jang-Yeon Hwang ◽  
Yang-Kook Sun

Silicon-based composites are very promising anode materials not only for boosting the energy density of lithium-ion batteries (LIBs) but for realizing Li metal-free new battery systems such as Li–S and Li–O2.


2020 ◽  
Vol 20 (5) ◽  
pp. 2652-2667 ◽  
Author(s):  
Juan Xu ◽  
Biao Gao ◽  
Kai-Fu Huo ◽  
Paul K. Chu

As a new type of energy-storage devices, lithium-ion capacitors (LICs) are designed to deliver high energy densities, high power densities, and long lifespan by integrating the battery-type anodes and capacitor-type cathodes. Achieving high energy and power density simultaneously is the challenge of LICs, which is mainly determined by the cathode and anode materials. In this mini-review, basing on the working principles of LICs, we discuss the categories and electrochemical performance as well as the matching strategies of the cathodes and anodes. In anodes, we focus on summarizing the structural design of the prelithiation transition-metal compounds based materials. In cathodes, we emphasize discussing the fabrication and morphology adjustment of the low dimensional carbon materials. Finally, the prospects and challenges confronting future research and development of LICs are provided.


2015 ◽  
Vol 3 (6) ◽  
pp. 2454-2484 ◽  
Author(s):  
Poulomi Roy ◽  
Suneel Kumar Srivastava

High-energy consumption in our day-to-day life can be balanced not only by harvesting pollution-free renewable energy sources, but also requires proper storage and distribution of energy. In this regard, lithium ion batteries are currently considered as effective energy storage devices and are involved in the most active research.


2017 ◽  
Vol 5 (39) ◽  
pp. 20969-20977 ◽  
Author(s):  
Eunho Lim ◽  
Won-Gwang Lim ◽  
Changshin Jo ◽  
Jinyoung Chun ◽  
Mok-Hwa Kim ◽  
...  

A Li-ion hybrid supercapacitor (Li-HSC) delivering high energy within seconds (excellent rate performance) with stable cycle life is one of the most highly attractive energy storage devices.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhichang Xiao ◽  
Junwei Han ◽  
Haiyong He ◽  
Xinghao Zhang ◽  
Jing Xiao ◽  
...  

Lithium-ion capacitors (LICs) have attracted much attention considering their efficient combination of high energy density and high-power density. However, to meet the increasing requirements of energy storage devices and the...


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 703 ◽  
Author(s):  
Qi Li ◽  
Michael Horn ◽  
Yinong Wang ◽  
Jennifer MacLeod ◽  
Nunzio Motta ◽  
...  

Supercapacitors are a highly promising class of energy storage devices due to their high power density and long life cycle. Conducting polymers (CPs) and organic molecules are potential candidates for improving supercapacitor electrodes due to their low cost, large specific pseudocapacitance and facile synthesis methods. Graphene, with its unique two-dimensional structure, shows high electrical conductivity, large specific surface area and outstanding mechanical properties, which makes it an excellent material for lithium ion batteries, fuel cells and supercapacitors. The combination of CPs and graphene as electrode material is expected to boost the properties of supercapacitors. In this review, we summarize recent reports on three different CP/graphene composites as electrode materials for supercapacitors, discussing synthesis and electrochemical performance. Novel flexible and wearable devices based on CP/graphene composites are introduced and discussed, with an eye to recent developments and challenges for future research directions.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4302
Author(s):  
Dominik Knozowski ◽  
Magdalena Graczyk-Zajac ◽  
Grzegorz Trykowski ◽  
Monika Wilamowska-Zawłocka

Herein we present a study on polymer-derived silicon oxycarbide (SiOC)/graphite composites for a potential application as an electrode in high power energy storage devices, such as Lithium-Ion Capacitor (LIC). The composites were processed using high power ultrasound-assisted sol-gel synthesis followed by pyrolysis. The intensive sonication enhances gelation and drying process, improving the homogenous distribution of the graphitic flakes in the preceramic blends. The physicochemical investigation of SiOC/graphite composites using X-ray diffraction, 29Si solid state NMR and Raman spectroscopy indicated no reaction occurring between the components. The electrochemical measurements revealed enhanced capacity (by up to 63%) at high current rates (1.86 A g−1) recorded for SiOC/graphite composite compared to the pure components. Moreover, the addition of graphite to the SiOC matrix decreased the value of delithiation potential, which is a desirable feature for anodes in LIC.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1523
Author(s):  
Lilian Schwich ◽  
Michael Küpers ◽  
Martin Finsterbusch ◽  
Andrea Schreiber ◽  
Dina Fattakhova-Rohlfing ◽  
...  

In the coming years, the demand for safe electrical energy storage devices with high energy density will increase drastically due to the electrification of the transportation sector and the need for stationary storage for renewable energies. Advanced battery concepts like all-solid-state batteries (ASBs) are considered one of the most promising candidates for future energy storage technologies. They offer several advantages over conventional Lithium-Ion Batteries (LIBs), especially with regard to stability, safety, and energy density. Hardly any recycling studies have been conducted, yet, but such examinations will play an important role when considering raw materials supply, sustainability of battery systems, CO2 footprint, and general strive towards a circular economy. Although different methods for recycling LIBs are already available, the transferability to ASBs is not straightforward due to differences in used materials and fabrication technologies, even if the chemistry does not change (e.g., Li-intercalation cathodes). Challenges in terms of the ceramic nature of the cell components and thus the necessity for specific recycling strategies are investigated here for the first time. As a major result, a recycling route based on inert shredding, a subsequent thermal treatment, and a sorting step is suggested, and transferring the extracted black mass to a dedicated hydrometallurgical recycling process is proposed. The hydrometallurgical approach is split into two scenarios differing in terms of solubility of the ASB-battery components. Hence, developing a full recycling concept is reached by this study, which will be experimentally examined in future research.


Author(s):  
Tariq Bashir ◽  
Sara Adeeba Ismail ◽  
Yuheng Song ◽  
Rana Muhammad Irfan ◽  
Shiqi Yang ◽  
...  

Energy storage devices such as batteries hold great importance for society, owing to their high energy density, environmental benignity and low cost. However, critical issues related to their performance and safety still need to be resolved. The periodic table of elements is pivotal to chemistry, physics, biology and engineering and represents a remarkable scientific breakthrough that sheds light on the fundamental laws of nature. Here, we provide an overview of the role of the most prominent elements, including s-block, p-block, transition and inner-transition metals, as electrode materials for lithium-ion battery systems regarding their perspective applications and fundamental properties. We also outline hybrid materials, such as MXenes, transition metal oxides, alloys and graphene oxide. Finally, the challenges and prospects of each element and their derivatives and hybrids for future battery systems are discussed, which may provide guidance towards green, low-cost, versatile and sustainable energy storage devices.


2022 ◽  
Author(s):  
Xiaohong Ding ◽  
Ruilai Liu ◽  
Jiapeng Hu ◽  
Jingyun Zhao ◽  
Jinjin Wu ◽  
...  

The cost-effective synthesis of flexible energy storage devices with high energy and power densities is a challenge in wearable electronics. Here, we report a facile, efficient, and scalable approach for...


Sign in / Sign up

Export Citation Format

Share Document