scholarly journals Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs)

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Qomaruddin ◽  
Olga Casals ◽  
Hutomo Suryo Wasisto ◽  
Andreas Waag ◽  
Joan Daniel Prades ◽  
...  

In this work, nitrogen dioxide (NO2) gas sensors based on zinc oxide nanorods (ZnO NRs) decorated with gold nanoparticles (Au NPs) working under visible-light illumination with different wavelengths at room temperature are presented. The contribution of localized surface plasmon resonant (LSPR) by Au NPs attached to the ZnO NRs is demonstrated. According to our results, the presence of LSPR not only extends the functionality of ZnO NRs towards longer wavelengths (green light) but also increases the response at shorter wavelengths (blue light) by providing new inter-band gap energetic states. Finally, the sensing mechanism based on LSPR Au NPs is proposed.

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3639 ◽  
Author(s):  
Cheng-Jyun Wang ◽  
Hsin-Chiang You ◽  
Kuan Lin ◽  
Jen-Hung Ou ◽  
Keng-Hsien Chao ◽  
...  

Highly transparent zinc oxide (ZnO)-based thin-film transistors (TFTs) with gold nanoparticles (AuNPs) capable of detecting visible light were fabricated through spray pyrolysis on a fluorine-doped tin oxide substrate. The spray-deposited channel layer of ZnO had a thickness of approximately 15 nm, and the thickness exhibited a linear increase with an increasing number of sprays. Furthermore, the ZnO thin-film exhibited a markedly smoother channel layer with a significantly lower surface roughness of 1.84 nm when the substrate was 20 cm from the spray nozzle compared with when it was 10 cm away. Finally, a ZnO and Au-NP heterojunction nanohybrid structure using plasmonic energy detection as an electrical signal, constitutes an ideal combination for a visible-light photodetector. The ZnO-based TFTs convert localized surface plasmon energy into an electrical signal, thereby extending the wide band-gap of materials used for photodetectors to achieve visible-light wavelength detection. The photo-transistors demonstrate an elevated on-current with an increase of the AuNP density in the concentration of 1.26, 12.6, and 126 pM and reach values of 3.75, 5.18, and 9.79 × 10−7 A with applied gate and drain voltages. Moreover, the threshold voltage (Vth) also drifts to negative values as the AuNP density increases.


Sign in / Sign up

Export Citation Format

Share Document