scholarly journals Optical Sensing of Nitrogen, Phosphorus and Potassium: A Spectrophotometrical Approach Toward Smart Nutrient Deployment

Chemosensors ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 51 ◽  
Author(s):  
Monteiro-Silva ◽  
Jorge ◽  
Martins

The feasibility of a compact, modular sensing system able to quantify the presence of nitrogen, phosphorus and potassium (NPK) in nutrient-containing fertilizer water was investigated. Direct UV-Vis spectroscopy combined with optical fibers were employed to design modular compact sensing systems able to record absorption spectra of nutrient solutions resulting from local producer samples. N, P, and K spectral interference was studied by mixtures of commercial fertilizer solutions to simulate real conditions in hydroponic productions. This study demonstrates that the use of bands for the quantification of nitrogen with linear or logarithmic regression models does not produce analytical grade calibrations. Furthermore, multivariate regression models, i.e., Partial Least Squares (PLS), which consider specimens interference, perform poorly for low absorbance nutrients. The high interference present in the spectra has proven to be solved by an innovative self-learning artificial intelligence algorithm that is able to find interference modes among a spectral database to produce consistent predictions. By correctly modeling the existing interferences, analytical grade quantification of N, P, and K has proven feasible. The results of this work open the possibility of real-time NPK monitoring in Micro-Irrigation Systems.

HortScience ◽  
1991 ◽  
Vol 26 (2) ◽  
pp. 141-142 ◽  
Author(s):  
Regina R. Melton ◽  
Robert J. Dufault

Tomato (L.ycopersicon esculentum Mill.) seedlings were nutritionally conditioned with solutions containing factorial combinations of N at 25, 75, and 225 mg·liter -1, P at 5, 15, and 45 mg·liter-1, and K at 25, 75, and 225 mg·liter -1 to determine the effect of nutritional regimes on tomato transplant growth and quality. As N increased from 25 to 225 mg·liter-1, fresh shoot weight, plant height, stem diameter, leaf number, leaf area, shoot and root dry weights, and total chlorophyll increased. Nitrogen accounted for the major source of variation. Phosphorus effects were significant only in 1988; Pat 45 mg·liter-1 increased fresh shoot weight, plant height, stem diameter, leaf number, and leaf area in comparison to 5 and 15 mg·liter -1. Potassium did not significantly influence any of the growth variables measured in the study. For quality transplant production, nutrient solutions should contain at least N at 225 mg·liter-1, P at 45 mg·liter-1, and K at 25 mg·liter-1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lewys Bevan ◽  
Max Jones ◽  
Youbin Zheng

Following legalisation, cannabis has quickly become an important horticultural crop in Canada and increasingly so in other parts of the world. However, due to previous legal restrictions on cannabis research there are limited scientific data on the relationship between nitrogen (N), phosphorus (P), and potassium (K) supply (collectively: NPK) and the crop yield and quality. This study examined the response of a high delta-9-tetrahydrocannabinol (THC) Cannabis sativa cultivar grown in deep-water culture with different nutrient solution treatments varying in their concentrations (mg L–1) of N (70, 120, 180, 250, 290), P (20, 40, 60, 80, 100), and K (60, 120, 200, 280, 340) according to a central composite design. Results demonstrated that inflorescence yield responded quadratically to N and P, with the optimal concentrations predicted to be 194 and 59 mg L–1, respectively. Inflorescence yield did not respond to K in the tested range. These results can provide guidance to cultivators when formulating nutrient solutions for soilless cannabis production and demonstrates the utility of surface response design for efficient multi-nutrient optimisation.


2010 ◽  
Vol 36 (4) ◽  
pp. 655-664 ◽  
Author(s):  
Yong-Jian SUN ◽  
Yuan-Yuan SUN ◽  
Xu-Yi LI ◽  
Rong-Ping ZHANG ◽  
Xiang GUO ◽  
...  

2016 ◽  
Vol 30 (4) ◽  
pp. 401-414 ◽  
Author(s):  
Ewa Błońska ◽  
Kazimierz Januszek ◽  
Stanisław Małek ◽  
Tomasz Wanic

AbstractThe experimental plots used in the study were located in the middle forest zone (elevation: 900-950 m a.s.l.) on two nappes of the flysch Carpathians in southern Poland. The aim of this study was to assess the effects of serpentinite in combination with nitrogen, phosphorus, and potassium fertilizers on selected chemical properties of the soil and activity of dehydrogenase and urease in the studied soils. All fertilizer treatments significantly enriched the tested soils in magnesium. The use of serpentinite as a fertilizer reduced the molar ratio of exchangeable calcium to magnesium, which facilitated the uptake of magnesium by tree roots due to competition between calcium and magnesium. After one year of fertilization on the Wisła experimental plot, the pH of the Ofh horizon increased, while the pH of the mineral horizons significantly decreased. Enrichment of serpentinite with nitrogen, phosphorus, and potassium fertilizers stimulated the dehydrogenase activity in the studied organic horizon. The lack of a negative effect of the serpentinite fertilizer on enzyme activity in the spruce stand soil showed that the concentrations of the heavy metals added to the soil were not high enough to be toxic and indicated the feasibility of using this fertilizer in forestry.


itsrj ◽  
2021 ◽  
Author(s):  
Brian McDonald ◽  
Alec Kowalewski ◽  
Clint Mattox ◽  
Emily Braithwaite ◽  
Charles Schmid

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tej Bahadur Darji ◽  
Barsha Adhikari ◽  
Seeta Pathak ◽  
Shristi Neupane ◽  
Lal B. Thapa ◽  
...  

AbstractThe response of native plants to allelopathic interference of invasive species may differ from species to species. In this study, the phytotoxic effects of Ageratina adenophora were tested on two native shrubs (Osbeckia stellata and Elsholtzia blanda) of Nepal. Both the shrubs were grown in pots under treatments of A. adenophora fresh leaves and root leachates, and litter. Then, the seedling length and biomass were compared among the treatments. The results show that A. adenophora litter has stimulatory effects but the leachates from fresh leaves and root are phytotoxic to the growth and development of native shrubs. Infrared Spectroscopy (IR) analysis confirmed the presence of O–H (Hydroxyl), N–H (Amines), C≡C (Alkynes), and C–H stretching (Aromatic) or C–O–C stretching (Ethers) in the leachates representing harmful allelochemicals. The invaded soil by A. adenophora had low pH and a high amount of organic matter, total nitrogen, phosphorus, and potassium than the uninvaded soil. The results indicate that the native O. stellata and E. blanda are harmed by A. adenophora in nature by leaching of allelochemicals and probably by reducing the soil pH. Overall, this study has provided valuable insights regarding the effects of A. adenophora invasion on native shrubs and revealing the potential mechanism of its invasiveness.


2009 ◽  
Vol 80 (4) ◽  
pp. 475-485 ◽  
Author(s):  
Yusuke TABATA ◽  
Daisuke TOGO ◽  
Masayuki KITAGAWA ◽  
Kazato OISHI ◽  
Hajime KUMAGAI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document