scholarly journals Hydrogen Peroxide Sensors for Biomedical Applications

Chemosensors ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 64 ◽  
Author(s):  
Jakob Meier ◽  
Eric M Hofferber ◽  
Joseph A Stapleton ◽  
Nicole M Iverson

Hydrogen peroxide (H2O2) is an important molecule within the human body, but many of its roles in physiology and pathophysiology are not well understood. To better understand the importance of H2O2 in biological systems, it is essential that researchers are able to quantify this reactive species in various settings, including in vitro, ex vivo and in vivo systems. This review covers a broad range of H2O2 sensors that have been used in biological systems, highlighting advancements that have taken place since 2015.

Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 861
Author(s):  
Elizabeth E. Niedert ◽  
Chenghao Bi ◽  
Georges Adam ◽  
Elly Lambert ◽  
Luis Solorio ◽  
...  

A microrobot system comprising an untethered tumbling magnetic microrobot, a two-degree-of-freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High-frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a 1-h time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.


2019 ◽  
Vol 10 (34) ◽  
pp. 7835-7851 ◽  
Author(s):  
Eunha Kim ◽  
Heebeom Koo

Copper-free click chemistry has resulted in a change of paradigm, showing that artificial chemical reactions can occur on cell surfaces, in cell cytosol, or within the body. It has emerged as a valuable tool in biomedical fields.


2020 ◽  
Vol 8 (3) ◽  
pp. 89 ◽  
Author(s):  
Martin Grootveld ◽  
Edward Lynch ◽  
Georgina Page ◽  
Wyman Chan ◽  
Benita Percival ◽  
...  

Peroxides present in oral healthcare products generally exert favourable protective activities against the development and progression of tooth decay, plaque, gingivitis, and halitosis, etc. However, despite the high level of research focus on hydrogen and carbamide peroxides as therapeutically active (and tooth-whitening) agents, to date the use of alternative chemical forms of peroxides such as peroxoborates for these purposes has received only scant attention. Intriguingly, peroxoborate and its esters with polyols, such as glycerol, have a very diverse chemistry/biochemistry in aqueous solution, for which there is an increasing amount of evidence that it remains distinctive from that of hydrogen peroxide; such properties include self-associative and hydrolytic equilibria, and their abilities to participate in electrophile- or nucleophile-scavenging, metal ion-complexing, redox and free radical reactions, for example. Therefore, the purpose of this detailed commentary is to evaluate both differences and similarities between the molecular/biomolecular reactivities of peroxoborate species and hydrogen peroxide in vitro, ex-vivo and in vivo. It encompasses brief sectional accounts regarding the molecular heterogeneity of peroxoborates, the release of bioactive agents therefrom, and their oxidative attack on oral cavity biomolecules (the nucleophilic or electrophilic character of these oxidations are discussed). Further areas explored are the abilities of borates and peroxoborates to enhance the solubility of iron ions in aqueous solution, their involvements in free radical biochemistry (particularly the complexation of oxygen radical-promoting transition metal ions by, and antioxidant properties of, peroxoborate-polyol ester adducts), and the specific inhibition of protease enzymes. Further aspects focus on the tooth-whitening, oral malodor neutralizing, and potential mutagenic and genotoxic properties of peroxoborates, along with possible mechanisms for these processes. The abilities of peroxoborates, and peroxides in general, to modulate the activities of inflammatory mediators and vitamins, antioxidant or otherwise, are also explored.


2020 ◽  
Author(s):  
Elizabeth E. Niedert ◽  
Chenghao Bi ◽  
Georges Adam ◽  
Elly Lambert ◽  
Luis Solorio ◽  
...  

AbstractA microrobot system comprised of an untethered tumbling magnetic microrobot, a two degree of freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a one hour time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.


Author(s):  
Д.А. Еникеев ◽  
К.О. Кузнецов ◽  
О.А. Еникеев ◽  
Д.Р. Кузнецова ◽  
Э.Н. Хисамов ◽  
...  

В статье приведен обзор литературы за последние 100 лет. Затронута история открытия и применения перекиси водорода в различные годы. Подробно описаны химические и физические свойства перекиси водорода, её механизмы действия in vivo и in vitro. Затронута тема образования перекиси водорода в собственных клетках организма человека и животных, описаны физиологические функции эндогенной перекиси водорода в человеческом теле. The article provides a review of literature for the past 100 years; touches on the history of discovery and the use of hydrogen peroxide in different years; describes in detail chemical and physical properties of hydrogen peroxide, and its mechanisms of action in vivo and in vitro. The review addresses the formation of hydrogen peroxide in human and animal cells and describes physiological functions of endogenous hydrogen peroxide in the human body.


Author(s):  
Yasushi P. Kato ◽  
Michael G. Dunn ◽  
Frederick H. Silver ◽  
Arthur J. Wasserman

Collagenous biomaterials have been used for growing cells in vitro as well as for augmentation and replacement of hard and soft tissues. The substratum used for culturing cells is implicated in the modulation of phenotypic cellular expression, cellular orientation and adhesion. Collagen may have a strong influence on these cellular parameters when used as a substrate in vitro. Clinically, collagen has many applications to wound healing including, skin and bone substitution, tendon, ligament, and nerve replacement. In this report we demonstrate two uses of collagen. First as a fiber to support fibroblast growth in vitro, and second as a demineralized bone/collagen sponge for radial bone defect repair in vivo.For the in vitro study, collagen fibers were prepared as described previously. Primary rat tendon fibroblasts (1° RTF) were isolated and cultured for 5 days on 1 X 15 mm sterile cover slips. Six to seven collagen fibers, were glued parallel to each other onto a circular cover slip (D=18mm) and the 1 X 15mm cover slip populated with 1° RTF was placed at the center perpendicular to the collagen fibers. Fibroblast migration from the 1 x 15mm cover slip onto and along the collagen fibers was measured daily using a phase contrast microscope (Olympus CK-2) with a calibrated eyepiece. Migratory rates for fibroblasts were determined from 36 fibers over 4 days.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


1992 ◽  
Vol 68 (06) ◽  
pp. 687-693 ◽  
Author(s):  
P T Larsson ◽  
N H Wallén ◽  
A Martinsson ◽  
N Egberg ◽  
P Hjemdahl

SummaryThe significance of platelet β-adrenoceptors for platelet responses to adrenergic stimuli in vivo and in vitro was studied in healthy volunteers. Low dose infusion of the β-adrenoceptor agonist isoprenaline decreased platelet aggregability in vivo as measured by ex vivo filtragometry. Infusion of adrenaline, a mixed α- and β-adrenoceptor agonist, increased platelet aggregability in vivo markedly, as measured by ex vivo filtragometry and plasma β-thromboglobulin levels. Adrenaline levels were 3–4 nM in venous plasma during infusion. Both adrenaline and high dose isoprenaline elevated plasma von Willebrand factor antigen levels β-Blockade by propranolol did not alter our measures of platelet aggregability at rest or during adrenaline infusions, but inhibited adrenaline-induced increases in vWf:ag. In a model using filtragometry to assess platelet aggregability in whole blood in vitro, propranolol enhanced the proaggregatory actions of 5 nM, but not of 10 nM adrenaline. The present data suggest that β-adrenoceptor stimulation can inhibit platelet function in vivo but that effects of adrenaline at high physiological concentrations are dominated by an α-adrenoceptor mediated proaggregatory action.


1979 ◽  
Vol 41 (03) ◽  
pp. 465-474 ◽  
Author(s):  
Marcia R Stelzer ◽  
Thomas S Burns ◽  
Robert N Saunders

SummaryThe relationship between the effects of suloctidil in vivo as an antiplatelet agent and in vitro as a modifier of platelet serotonin (5-HT) parameters was investigated. Suloctidil was found to be effective in reducing platelet aggregates formation in the retired breeder rat as determined using the platelet aggregate ratio method (PAR) with an ED50 of 16.1 mg/kg 24 hours post administration. In contrast to the hypothesis that 5-HT depletion is involved in the anti-aggregatory mechanism of suloctidil, no correlation was found between platelet 5- HT content and this antiplatelet activity. Reduction of platelet 5-HT content required multiple injections of high doses (100 mg/kg/day) of suloctidil. Suloctidil administration for 8 days at 100 mg/kg/day, which lowered platelet 5-HT content by 50%, resulted in no permanent effect on ex vivo platelet 5-HT uptake or thrombin-induced release, nor alteration in the plasma 5-HT level. However, these platelets exhibited a short-lived, significant increase in percent leakage of 5-HT after 30 minutes of incubation. Therefore, suloctidil treatment at high doses may with time result in platelet 5-HT depletion, however this effect is probably not related to the primary anti-aggregatory activity of the drug.


Sign in / Sign up

Export Citation Format

Share Document