scholarly journals A Paper-Based Potentiometric Platform for Determination of Water Hardness

Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 96
Author(s):  
Mohammed L. Bouhoun ◽  
Pascal Blondeau ◽  
Yamina Louafi ◽  
Francisco J. Andrade

A novel paper-based potentiometric platform for the simple and fast monitoring of water hardness is presented. First, potentiometric ion-selective electrodes for calcium and magnesium printed on a paper substrate were built and optimized. These sensors, which display near-Nernstian sensitivity, were used for the determination of the concentration of these cations and the calculation of the water hardness. Second, the incorporation of a solid-state reference electrode allowed building an integrated paper-based potentiometric cell for the determination of the hardness of artificial and real samples (mineral waters). The validation of the results shows good ability to predict hardness in the conventional scale. Truly decentralized measurements were demonstrated by integration of a miniaturized instrument and dedicated software in a portable device. The measurements were able to be performed in just under two minutes, including a two-point calibration. Since the method is simple to use and cost-effective, it can be implemented in domestic and industrial settings.

1994 ◽  
Vol 6 (11-12) ◽  
pp. 962-971 ◽  
Author(s):  
Dermot Diamond ◽  
Eamonn McEnroe ◽  
Mary McCarrick ◽  
Andrzej Lewenstam

2016 ◽  
Vol 12 (3) ◽  
pp. 177-184 ◽  
Author(s):  
Gamal Abdel-Hafiz Mostafa ◽  
Mohammed Hefnawy ◽  
Mohammed Abounassif ◽  
Amer Alanazi ◽  
Abdulrahman Al-Majed ◽  
...  

2020 ◽  
Vol 16 (7) ◽  
pp. 924-932
Author(s):  
Yasmeen Mutlaq Ghazi Al Shamari ◽  
Saikh Mohammad Wabaidur ◽  
Abdulrahman Abdullah Alwarthan ◽  
Moonis Ali Khan ◽  
Masoom Raza Siddiqui

Background : A new method has been developed for the determination of food dye tartrazine in soft drinks. Tartrazine is determined by hyphenated technique Ultra Performance Liquid Chromatography coupled with Mass spectrometry. The solid-phase extraction was used for the extraction of tartrazine. Methods: For the LC-MS analysis of tartrazine acetonitrile, water (80:20) was used as a mobile phase whereas, the C-18 column was selected as the stationary phase. The chromatographic run was allowed for 1 min. The adsorbent of the solid-phase extraction was synthesized from the waste corn cob. Results: Method found to be linear in the range of 0.1 mg L-1 - 10 mg L-1, limits of detection and quantitation were found to be 0.0165 mgL-1 and 0.055 mgL-1, respectively. Tartrazine, in the real sample, was found to be 20.39 mgL-1 and 83.26 mgL-1. Conclusion: The developed UPLC-MS method is rapid, simple, precise and can be used for the quantitative analysis of tartrazine. The solid-phase extraction also involves a cost-effective procedure for extraction as it does not involve the commercial cartridge.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 298
Author(s):  
Alexander Ecke ◽  
Rudolf J. Schneider

Contamination of waters with pharmaceuticals is an alarming problem as it may support the evolution of antimicrobial resistance. Therefore, fast and cost-effective analytical methods for potential on-site analysis are desired in order to control the water quality and assure the safety of its use as a source of drinking water. Antibody-based methods, such as the enzyme-linked immunosorbent assay (ELISA), can be helpful in this regard but can also have certain pitfalls in store, depending on the analyte. As shown here for the class of β-lactam antibiotics, hydrolysis of the β‑lactam ring is a key factor in the immunochemical analysis as it influences antibody recognition. With the antibody used in this study, the limit of detection (LOD) in the immunoassay could be significantly reduced by hydrolysis for the five tested penicillins, with the lowest LOD for carbenicillin (0.2 nmol/L) and the greatest impact on penicillins G and V (reduction by 85%). In addition to enhanced quantification, our strategy also provides access to information about the degree of hydrolysis in water samples as shown for the most abundant penicillin amoxicillin.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 42
Author(s):  
Shimrith Paul Shylendra ◽  
Wade Lonsdale ◽  
Magdalena Wajrak ◽  
Mohammad Nur-E-Alam ◽  
Kamal Alameh

In this work, a solid-state potentiometric pH sensor is designed by incorporating a thin film of Radio Frequency Magnetron Sputtered (RFMS) Titanium Nitride (TiN) working electrode and a commercial Ag|AgCl|KCl double junction reference electrode. The sensor shows a linear pH slope of −59.1 mV/pH, R2 = 0.9997, a hysteresis as low as 1.2 mV, and drift below 3.9 mV/h. In addition, the redox interference performance of TiN electrodes is compared with that of Iridium Oxide (IrO2) counterparts. Experimental results show −32 mV potential shift (E0 value) in 1 mM ascorbic acid (reducing agent) for TiN electrodes, and this is significantly lower than the −114 mV potential shift of IrO2 electrodes with sub-Nernstian sensitivity. These results are most encouraging and pave the way towards the development of miniaturized, cost-effective, and robust pH sensors for difficult matrices, such as wine and fresh orange juice.


Sign in / Sign up

Export Citation Format

Share Document