scholarly journals Assessing Future Spatio-Temporal Changes in Crop Suitability and Planting Season over West Africa: Using the Concept of Crop-Climate Departure

Climate ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 102 ◽  
Author(s):  
Temitope S. Egbebiyi ◽  
Chris Lennard ◽  
Olivier Crespo ◽  
Phillip Mukwenha ◽  
Shakirudeen Lawal ◽  
...  

The changing climate is posing significant threats to agriculture, the most vulnerable sector, and the main source of livelihood in West Africa. This study assesses the impact of the climate-departure on the crop suitability and planting month over West Africa. We used 10 CMIP5 Global climate models bias-corrected simulations downscaled by the CORDEX regional climate model, RCA4 to drive the crop suitability model, Ecocrop. We applied the concept of the crop-climate departure (CCD) to evaluate future changes in the crop suitability and planting month for five crop types, cereals, legumes, fruits, root and tuber and horticulture over the historical and future months. Our result shows a reduction (negative linear correlation) and an expansion (positive linear correlation) in the suitable area and crop suitability index value in the Guinea-Savanna and Sahel (southern Sahel) zone, respectively. The horticulture crop was the most negatively affected with a decrease in the suitable area while cereals and legumes benefited from the expansion in suitable areas into the Sahel zone. In general, CCD would likely lead to a delay in the planting season by 2–4 months except for the orange and early planting dates by about 2–3 months for cassava. No projected changes in the planting month are observed for the plantain and pineapple which are annual crops. The study is relevant for a short and long-term adaptation option and planning for future changes in the crop suitability and planting month to improve food security in the region.

2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


Author(s):  
J Berner ◽  
F.J Doblas-Reyes ◽  
T.N Palmer ◽  
G Shutts ◽  
A Weisheimer

The impact of a nonlinear dynamic cellular automaton (CA) model, as a representation of the partially stochastic aspects of unresolved scales in global climate models, is studied in the European Centre for Medium Range Weather Forecasts coupled ocean–atmosphere model. Two separate aspects are discussed: impact on the systematic error of the model, and impact on the skill of seasonal forecasts. Significant reductions of systematic error are found both in the tropics and in the extratropics. Such reductions can be understood in terms of the inherently nonlinear nature of climate, in particular how energy injected by the CA at the near-grid scale can backscatter nonlinearly to larger scales. In addition, significant improvements in the probabilistic skill of seasonal forecasts are found in terms of a number of different variables such as temperature, precipitation and sea-level pressure. Such increases in skill can be understood both in terms of the reduction of systematic error as mentioned above, and in terms of the impact on ensemble spread of the CA's representation of inherent model uncertainty.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Bernd Kärcher ◽  
Fabian Mahrt ◽  
Claudia Marcolli

AbstractFully accounting for the climate impact of aviation requires a process-level understanding of the impact of aircraft soot particle emissions on the formation of ice clouds. Assessing this impact with the help of global climate models remains elusive and direct observations are lacking. Here we use a high-resolution cirrus column model to investigate how aircraft-emitted soot particles, released after ice crystals sublimate at the end of the lifetime of contrails and contrail cirrus, perturb the formation of cirrus. By allying cloud simulations with a measurement-based description of soot-induced ice formation, we find that only a small fraction (<1%) of the soot particles succeeds in forming cloud ice alongside homogeneous freezing of liquid aerosol droplets. Thus, soot-perturbed and homogeneously-formed cirrus fundamentally do not differ in optical depth. Our results imply that climate model estimates of global radiative forcing from interactions between aircraft soot and large-scale cirrus may be overestimates. The improved scientific understanding reported here provides a process-based underpinning for improved climate model parametrizations and targeted field observations.


Author(s):  
Simon N. Gosling ◽  
Dan Bretherton ◽  
Keith Haines ◽  
Nigel W. Arnell

Uncertainties associated with the representation of various physical processes in global climate models (GCMs) mean that, when projections from GCMs are used in climate change impact studies, the uncertainty propagates through to the impact estimates. A complete treatment of this ‘climate model structural uncertainty’ is necessary so that decision-makers are presented with an uncertainty range around the impact estimates. This uncertainty is often underexplored owing to the human and computer processing time required to perform the numerous simulations. Here, we present a 189-member ensemble of global river runoff and water resource stress simulations that adequately address this uncertainty. Following several adaptations and modifications, the ensemble creation time has been reduced from 750 h on a typical single-processor personal computer to 9 h of high-throughput computing on the University of Reading Campus Grid. Here, we outline the changes that had to be made to the hydrological impacts model and to the Campus Grid, and present the main results. We show that, although there is considerable uncertainty in both the magnitude and the sign of regional runoff changes across different GCMs with climate change, there is much less uncertainty in runoff changes for regions that experience large runoff increases (e.g. the high northern latitudes and Central Asia) and large runoff decreases (e.g. the Mediterranean). Furthermore, there is consensus that the percentage of the global population at risk to water resource stress will increase with climate change.


2014 ◽  
Vol 71 (9) ◽  
pp. 3376-3391 ◽  
Author(s):  
Claudia Stephan ◽  
M. Joan Alexander

Abstract Gravity waves have important effects on the middle atmosphere circulation, and those generated by convection are prevalent in the tropics and summer midlatitudes. Numerous case studies have been carried out to investigate their characteristics in high-resolution simulations. Here, the impact of the choice of physics parameterizations on the generation and spectral properties of these waves in models is investigated. Using the Weather Research and Forecasting Model (WRF) a summertime squall line over the Great Plains is simulated in a three-dimensional, nonlinear, and nonhydrostatic mesoscale framework. The distributions of precipitation strength and echo tops in the simulations are compared with radar data. Unsurprisingly, those storm features are most sensitive to the microphysics scheme. However, it is found that these variations in storm morphology have little influence on the simulated stratospheric momentum flux spectra. These results support the fundamental idea behind climate model parameterizations: that the large-scale storm conditions can be used to predict the spectrum of gravity wave momentum flux above the storm irrespective of the convective details that coarse-resolution models cannot capture. The simulated spectra are then contrasted with those obtained from a parameterization used in global climate models. The parameterization reproduces the shape of the spectra reasonably well but their magnitudes remain highly sensitive to the peak heating rate within the convective cells.


2020 ◽  
Author(s):  
Peter Watson ◽  
Sarah Sparrow ◽  
William Ingram ◽  
Simon Wilson ◽  
Drouard Marie ◽  
...  

&lt;p&gt;Multi-thousand member climate model simulations are highly valuable for showing how extreme weather events will change as the climate changes, using a physically-based approach. However, until now, studies using such an approach have been limited to using models with a resolution much coarser than the most modern systems. We have developed a global atmospheric model with 5/6&amp;#176;x5/9&amp;#176; resolution (~60km in middle latitudes) that can be run in the climateprediction.net distributed computing system to produce such large datasets. This resolution is finer than that of many current global climate models and sufficient for good simulation of extratropical synoptic features such as storms. It will also allow many extratropical extreme weather events to be simulated without requiring regional downscaling. We will show that this model's simulation of extratropical weather is competitive with that in other current models. We will also present results from the first multi-thousand member ensembles produced at this resolution, showing the impact of 1.5&amp;#176;C and 2&amp;#176;C global warming on extreme winter rainfall and extratropical cyclones in Europe.&lt;/p&gt;


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher Horvat

AbstractGlobal climate models (GCMs) consistently underestimate the response of September Arctic sea-ice area (SIA) to warming. Modeled SIA losses are highly correlated to global mean temperature increases, making it challenging to gauge if improvements in modeled sea ice derive from improved sea-ice models or from improvements in forcing driven by other GCM components. I use a set of five large GCM ensembles, and CMIP6 simulations, to quantify GCM internal variability and variability between GCMs from 1979–2014, showing modern GCMs do not plausibly estimate the response of SIA to warming in all months. I identify the marginal ice zone fraction (MIZF) as a metric that is less correlated to warming, has a response plausibly simulated from January–September (but not October–December), and has highly variable future projections across GCMs. These qualities make MIZF useful for evaluating the impact of sea-ice model changes on past, present, and projected sea-ice state.


2021 ◽  
Author(s):  
Ulrike Proske ◽  
Sylvaine Ferrachat ◽  
David Neubauer ◽  
Martin Staab ◽  
Ulrike Lohmann

Abstract. Cloud properties and their evolution influence Earth's radiative balance. The cloud microphysical (CMP) processes that shape these properties are therefore important to be represented in global climate models. Historically, parameterizations in these models have grown more detailed and complex. However, a simpler formulation of CMP processes may leave the model results mostly unchanged while enabling an easier interpretation of model results and helping to increase process understanding. This study employs sensitivity analysis on an emulated perturbed parameter ensemble of the global aerosol-climate model ECHAM-HAM to illuminate the impact of selected CMP cloud ice processes on model output. The response to the phasing of a process thereby serves as a proxy for the effect of a simplification. Aggregation of ice crystals is found to be the dominant CMP process in influencing key variables such as the ice water path or cloud radiative effects, while riming of cloud droplets on snow influences mostly the liquid phase. Accretion of ice and snow and self-collection of ice crystals have a negligible influence on model output and are therefore identified as suitable candidates for future simplifications. In turn, the dominating role of aggregation suggests that this process has the greatest need to be represented correctly. A seasonal and spatially resolved analysis employing a spherical harmonics expansion of the data corroborates the results. This study introduces a new framework to evaluate a processes' impact in a complex numerical model, and paves the way for simplifications of CMP processes leading to more interpretable climate models.


2021 ◽  
pp. 1-69
Author(s):  
Zane Martin ◽  
Clara Orbe ◽  
Shuguang Wang ◽  
Adam Sobel

AbstractObservational studies show a strong connection between the intraseasonal Madden-Julian oscillation (MJO) and the stratospheric quasi-biennial oscillation (QBO): the boreal winter MJO is stronger, more predictable, and has different teleconnections when the QBO in the lower stratosphere is easterly versus westerly. Despite the strength of the observed connection, global climate models do not produce an MJO-QBO link. Here the authors use a current-generation ocean-atmosphere coupled NASA Goddard Institute for Space Studies global climate model (Model E2.1) to examine the MJO-QBO link. To represent the QBO with minimal bias, the model zonal mean stratospheric zonal and meridional winds are relaxed to reanalysis fields from 1980-2017. The model troposphere, including the MJO, is allowed to freely evolve. The model with stratospheric nudging captures QBO signals well, including QBO temperature anomalies. However, an ensemble of nudged simulations still lacks an MJO-QBO connection.


2017 ◽  
Author(s):  
Matthew C. Wozniak ◽  
Allison Steiner

Abstract. We develop a prognostic model of Pollen Emissions for Climate Models (PECM) for use within regional and global climate models to simulate pollen counts over the seasonal cycle based on geography, vegetation type and meteorological parameters. Using modern surface pollen count data, empirical relationships between prior-year annual average temperature and pollen season start dates and end dates are developed for deciduous broadleaf trees (Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, Ulmus), evergreen needleleaf trees (Cupressaceae, Pinaceae), grasses (Poaceae; C3, C4), and ragweed (Ambrosia). This regression model explains as much as 57 % of the variance in pollen phenological dates, and it is used to create a climate-flexible phenology that can be used to study the response of wind-driven pollen emissions to climate change. The emissions model is evaluated in a regional climate model (RegCM4) over the continental United States by prescribing an emission potential from PECM and transporting pollen as aerosol tracers. We evaluate two different pollen emissions scenarios in the model: (1) using a taxa-specific land cover database, phenology and emission potential, and (2) a PFT-based land cover, phenology and emission potential. The resulting surface concentrations for both simulations are evaluated against observed surface pollen counts in five climatic subregions. Given prescribed pollen emissions, the RegCM4 simulates observed concentrations within an order of magnitude, although the performance of the simulations in any subregion is strongly related to the land cover representation and the number of observation sites used to create the empirical phenological relationship. The taxa-based model provides a better representation of the phenology of tree-based pollen counts than the PFT-based model, however we note that the PFT-based version provides a useful and climate-flexible emissions model for the general representation of the pollen phenology over the United States.


Sign in / Sign up

Export Citation Format

Share Document