scholarly journals Enhanced Electrochromic Properties by Improvement of Crystallinity for Sputtered WO3 Film

Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 577
Author(s):  
Zhu-jie Xia ◽  
Hong-li Wang ◽  
Yi-fan Su ◽  
Peng Tang ◽  
Ming-jiang Dai ◽  
...  

Tungsten oxide (WO3) is widely used as a functional material for “smart windows” due to its excellent electrochromic properties, however it is difficult to overcome the conflict between its optical modulation and cyclic stability. In this work, WO3 thin films with different crystal structures were prepared by DC reactive magnetron sputtering method. The effects of substrate temperature on the structure, composition, and electrochromic properties of WO3 films were investigated. The results show that the crystallinity of the WO3 film increases with increasing deposition temperature, indicating that temperature plays an important role in controlling the structure of the WO3 film. For WO3 thin films formed at a substrate temperature of 573 K, the film is in an amorphous state to a crystalline transition state. From X-ray diffraction (XRD) analysis, the thin film showed a weak WO3 crystallization peak, which was in the composite structure of amorphous and nanocrystalline. Which has the best electrochromic properties, with modulation amplitude of 73.1% and bleached state with a coloration efficiency of 42.9 cm2/C at a wavelength of 550 nm. Even after 1500 cycles, the optical modulation still contains 65.4%, delivering the best cyclic stability.

2012 ◽  
Vol 528 ◽  
pp. 249-253
Author(s):  
K. Paipitak ◽  
J. Rattanarak ◽  
D. Pakdeeyingyong ◽  
W. Techitdheera ◽  
S. Porntheeraphat ◽  
...  

The paper describes the results obtained on the enhanced electrochromic performance of Tungsten oxide (WO3) thin films assisted by electrospun PVA nanofibers. WO3 was fabricated by spin coating technique with tungsten powder as starting precursor. The effect of electrospun-PVA nanofibers layer on structural, chemical composition, surface morphology and electrochromic properties of the films were characterized by X-ray diffractometer (XRD), X-ray photo-emission spectroscopy (XPS), scanning electron microscope (SEM) and UV-VIS spectrophotometer. The XRD analysis suggested that the crystalline of WO3 can be identified as a monoclinic WO3 structure. XPS investigations also confirmed the existence of characteristic peaks of W. The significant enhancement of electrochromic properties of the films is achieved by additive electrospun-PVA nanofiber layer.


2018 ◽  
Vol 57 (10) ◽  
pp. 100309 ◽  
Author(s):  
Mitsuaki Yano ◽  
Wataru Kuwagata ◽  
Hiroki Mito ◽  
Kazuto Koike ◽  
Shintaro Kobayashi ◽  
...  

2011 ◽  
Vol 509 (5) ◽  
pp. 1729-1733 ◽  
Author(s):  
P.M. Kadam ◽  
N.L. Tarwal ◽  
P.S. Shinde ◽  
S.S. Mali ◽  
R.S. Patil ◽  
...  

2008 ◽  
Vol 55-57 ◽  
pp. 881-884 ◽  
Author(s):  
Thitinai Gaewdang ◽  
N. Wongcharoen ◽  
P. Siribuddhaiwon ◽  
N. Promros

CdTe thin films with different substrate temperatures have been deposited by thermal evaporation method on glass substrate in vacuum chamber having low pressure about 3.0x10-5 mbar. According to XRD analysis, CdTe thin films are polycrystalline belonging to cubic structure with preferential orientation of (111) plane. The strongest peak intensity of XRD is observed in the film prepared with substrate temperature of 150°C. Band gap and band tail values of the as-deposited films were evaluated from the optical transmission spectra. The lowest dark sheet resistance value was obtained from the film prepared with substrate temperature of 150°C as well. Regarding to our experimental results, it may be indicated that the 150°C substrate temperature is the most suitable condition in preparing CdTe thin films for solar cell applications.


2007 ◽  
Vol 124-126 ◽  
pp. 1597-1600
Author(s):  
Hyoun Woo Kim ◽  
Sun Keun Hwang ◽  
Won Seung Cho ◽  
Tae Gyung Ko ◽  
Seung Yong Choi ◽  
...  

This paper reports the fabrication of indium oxide (In2O3) films using a triethylindium and oxygen mixture. The deposition has been carried out on TiAlN substrates (200-350°C). We have established the correlation between the substrate temperature and the structural properties. The films deposited at 300-350°C were polycrystalline, whereas those deposited at 200°C was close to amorphous. XRD analysis and SEM images indicated that the films grown at 350°C had grained structures with the (222) preferred orientation. The room-temperature photoluminescence spectra of the In2O3 films exhibited a visible light emission.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Vempuluri Madhavi ◽  
Paruchuri Kondaiah ◽  
Obili Mahammad Hussain ◽  
Suda Uthanna

Pure and Mo-doped WO3 films were formed on ITO-coated glass substrate held at 473 K by RF magnetron sputtering technique. The structural, morphological, and optical properties of pure and Mo-doped WO3 thin films have been systematically studied. The structural properties revealed that the pure WO3 films exhibited a (020) reflection related to the orthorhombic phase of WO3, whereas Mo-doped films showed (200) reflection. The surface morphology revealed that pure WO3 films showed the dense surface and Mo-doped films contained agglomerated grains which were uniformly distributed on the surface of the substrate. The optical transmittance decreased from 85% to 75% for pure and Mo-doped WO3 films, respectively. The electrochromic properties of the films were measured by cyclic voltametry in 1 M Li2SO4 electrolyte solution. The optical modulation of pure WO3 films at near IR was 50%, and the calculated color efficiency was 33.8 cm2/C, while in Mo-doped WO3 the efficiency improved to 42.5 cm2/C.


Sign in / Sign up

Export Citation Format

Share Document