scholarly journals Study on the Influencing Factors in the Process of Surface Strippable Decontaminant

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 649
Author(s):  
Zhi-yu He ◽  
Yin-Tao Li ◽  
Quan-ping Zhang ◽  
Ying-jun Li ◽  
Dong-liang Liu ◽  
...  

One effective measure of radioactive material purification is the use of strippable decontaminants, which effectively coat the pollutant, capture suspended particles in the air, and deposit them onto the surfaces of objects. However, there are some shortcomings in terms of film formation and peelability, such as a brittle coating and poor peelability. Therefore, in order to meet future military and emergency needs, this research investigated the influencing factors in the process of surface strippable decontamination. Experiments included tests for wettability, potential, particle size, strippable performance, tensile performance, ultraviolet transmittance reflectance, and film formation as well as image analysis of photomicrographs from an optical microscope system. These experiments indicate that the strippable decontaminant is a viable means of contamination removal.

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1556
Author(s):  
Zhiyu He ◽  
Yintao Li ◽  
Zhiqiang Xiao ◽  
Huan Jiang ◽  
Yuanlin Zhou ◽  
...  

Traditional methods that are used to deal with radioactive surface contamination, which are time-consuming and expensive. As one effective measure of radioactive material purification, strippable coating, which effectively coats the pollutant, and settles them on the surface of objects. However, there are some shortcomings in terms of film formation and peelability, such as a brittle coating and poor peelability. Therefore, in order to meet the treatment methods for radioactive contaminants needs, the strippable coating must have excellent sealing, corrosion resistance, weather resistance, low environmental pollution, short film formation time, and good mechanical properties; in addition, the spraying process should be simple, with moderate adhesion, and it should be capable of being quickly and completely peeled off. In this paper, a ternary system was prepared by pre-emulsion polymerization with butyl-acrylate, methyl methacrylate, acrylic acid as the reactive monomer, sodium dodecyl sulfate as the active agent, potassium persulfate as the initiator, and water as the dispersion medium. The Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H-NMR), ICP emission spectrometer, surface tension tester, and universal testing machine were used to characterize the structure and morphology of the composite materials. The results show that the decontaminant can quickly wet the powder particles and the surface pollutants. The sealing efficiency of Fe and Cu was over 90%. After the decontaminant was cured, it could be continuously formed on the surface of different substrates and be completely peeled off, as well as having excellent film formation and peelability.


2018 ◽  
Vol 50 (3) ◽  
pp. 358-362
Author(s):  
Jan T Benthien ◽  
Jan Ludtke ◽  
Rainer Friehmelt ◽  
Michael Schafer

2009 ◽  
Vol 8 (sup2) ◽  
pp. 283-285
Author(s):  
Anna Campagnoli ◽  
Marco Alberto Carlo Potenza ◽  
Matteo Alaimo ◽  
Alessandro Agazzi ◽  
Vincenzo Chiofalo ◽  
...  

2016 ◽  
Vol 9 (4) ◽  
pp. 170-177 ◽  
Author(s):  
Mayar Aly Atteya ◽  
Mohammed A.M. Salem ◽  
Doaa Hegazy ◽  
Mohammed Ismail Rou

2008 ◽  
Vol 5 (2) ◽  
pp. 509-521 ◽  
Author(s):  
A. Engel ◽  
K. G. Schulz ◽  
U. Riebesell ◽  
R. Bellerby ◽  
B. Delille ◽  
...  

Abstract. The influence of seawater carbon dioxide (CO2) concentration on the size distribution of suspended particles (2–60 μm) and on phytoplankton abundance was investigated during a mesocosm experiment at the large scale facility (LFS) in Bergen, Norway, in the frame of the Pelagic Ecosystem CO2 Enrichment study (PeECE II). In nine outdoor enclosures the partial pressure of CO2 in seawater was modified by an aeration system to simulate past (~190 μatm CO2), present (~370 μatm CO2) and future (~700 μatm CO2) CO2 conditions in triplicates. Due to the initial addition of inorganic nutrients, phytoplankton blooms developed in all mesocosms and were monitored over a period of 19 days. Seawater samples were collected daily for analysing the abundance of suspended particles and phytoplankton with the Coulter Counter and with Flow Cytometry, respectively. During the bloom period, the abundance of small particles (<4 μm) significantly increased at past, and decreased at future CO2 levels. At that time, a direct relationship between the total-surface-to-total-volume ratio of suspended particles and DIC concentration was determined for all mesocosms. Significant changes with respect to the CO2 treatment were also observed in the phytoplankton community structure. While some populations such as diatoms seemed to be insensitive to the CO2 treatment, others like Micromonas spp. increased with CO2, or showed maximum abundance at present day CO2 (i.e. Emiliania huxleyi). The strongest response to CO2 was observed in the abundance of small autotrophic nano-plankton that strongly increased during the bloom in the past CO2 mesocosms. Together, changes in particle size distribution and phytoplankton community indicate a complex interplay between the ability of the cells to physiologically respond to changes in CO2 and size selection. Size of cells is of general importance for a variety of processes in marine systems such as diffusion-limited uptake of substrates, resource allocation, predator-prey interaction, and gravitational settling. The observed changes in particle size distribution are therefore discussed with respect to biogeochemical cycling and ecosystem functioning.


2021 ◽  
Author(s):  
Yiting Nan ◽  
Peiyong Guo ◽  
Hui Xing ◽  
Sijia Chen ◽  
Bo Hu ◽  
...  

Abstract The effects of different concentrations (100,150,200,250 mg/L) and different particle sizes (0–75µm, 75–120µm, 120–150µm, 150–500µm) on soluble protein content, SOD and CAT activity, MDA content, chlorophyll a content and photosynthetic parameters of Microcystis flos-aquae were studied, the mechanism of the effect of suspended particulate matter on the physiology and biochemistry of Microcystis flos-aquae was discussed. The results showed that the soluble protein content of Microcystis flos-aquae did not change obviously after being stressed by suspended particles of different concentration/diameter. The SOD activity of Microcystis flos-aquae increased at first and then decreased with the increase of the concentration of suspended particulate matter. The SOD activity of Microcystis flos-aquae reached 28.03 U/mL when the concentration of suspended particulate matter was 100 mg/L. The CAT activity of Microcystis flos-aquae increased with the increase of the concentration of suspended particles, and reached the maximum value of 12.45 U/mgprot in the concentration group of 250 mg/L, showing a certain dose-effect. The effect of small particle size on SOD, CAT and MDA of Microcystis flos-aquae was more significant than that of large particle size. The larger the concentration and the smaller the particle size, the stronger the attenuation of light and the lower the content of chlorophyll a. Both Fv/Fm and Fv/F0 of Microcystis flos-aquae increased at first and then decreased under different concentration/size of suspended particles. The relative electron transfer rate gradually returned to the normal level with the passage of time. There was no significant difference in α value between treatment group and control group, ETRmax and Ik decreased.


2021 ◽  
Vol 21 (4) ◽  
pp. 2196-2202
Author(s):  
Xian-Rui Zhao ◽  
Dun-Wen Zuo ◽  
Yong Chen ◽  
Qin-Tao Li ◽  
Gui-Xiang Liu ◽  
...  

ZrC was produced by the combustion synthesis technology using Cu, Zr, and graphite as the starting element powders. The synthesis mechanism of ZrC was investigated by the combustion wave quenching experiment. Furthermore, the effects of sizes of C and Cu on the combustion synthesis behavior and products were also explored. Results revealed that ZrC was fabricated through the displacement reaction between C and Cu–Zr liquid. The Cu size hardly affected the combustion temperature and resultant products, indicating that the preparation cost of ZrC could be decreased by employing coarse Cu powders. With increasing C size, the burning temperature and ceramic particle size reduced. Graphite with size of 2.6 μm was used as the C source, and only ZrC nanoparticles and Cu were obtained. The products could be employed to prepare nano-sized ZrC/Cu composites without the elimination of by-products.


Sign in / Sign up

Export Citation Format

Share Document