scholarly journals A Review on Additive Manufacturing of Pure Copper

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 740
Author(s):  
Qi Jiang ◽  
Peilei Zhang ◽  
Zhishui Yu ◽  
Haichuan Shi ◽  
Di Wu ◽  
...  

With the development of the aerospace and automotive industries, high heat exchange efficiency is a challenge facing the development of various industries. Pure copper has excellent mechanical and physical properties, especially high thermal conductivity and electrical conductivity. These excellent properties make pure copper the material of choice for the manufacture of heat exchangers and other electrical components. However, the traditional processing method is difficult to achieve the production of pure copper complex parts, so the production of pure copper parts through additive manufacturing has become a problem that must be overcome in industrial development. In this article, we not only reviewed the current status of research on the structural design and preparation of complex pure copper parts by researchers using selective laser melting (SLM), selective electron beam melting (SEBM) and binder jetting (BJ) in recent years, but also reviewed the forming, physical properties and mechanical aspects of pure copper parts prepared by different additive manufacturing methods. Finally, the development trend of additive manufacturing of pure copper parts is also prospected.

Alloy Digest ◽  
1990 ◽  
Vol 39 (7) ◽  

Abstract ULTEM 6100 and 6200 are glass reinforced and ULTEM 6202 is a mineral filled copolymer resin. For properties of the unreinforced resin, ULTEM 6000, see Alloy Digest P-27, June 1991. These are high temperature materials that are particularly suitable for military electrical components which must survive 200 C testing. This datasheet provides information on physical properties, hardness, tensile properties, and compressive and shear strength as well as fracture toughness. It also includes information on corrosion resistance. Filing Code: Cp-16. Producer or source: G. E. Plastics.


Alloy Digest ◽  
1992 ◽  
Vol 41 (6) ◽  

Abstract CRONIFER II EXTRA, 45, III EXTRA AND IV EXTRA alloys are high heat resistant alloys, some with resistance to green rot and hardening environments. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. Filing Code: Ni-405. Producer or source: VDM Technologies Corporation.


Alloy Digest ◽  
1970 ◽  
Vol 19 (6) ◽  

Abstract BRUSH alloy M25 is a free-machining beryllium-copper alloy having good response to age-hardening for high strength, hardness, fatigue and corrosion resistance. It is recommended for screw machine products, gears, shafts, hardware, fasteners, connectors, electronic and electrical components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-217. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1980 ◽  
Vol 29 (2) ◽  

Abstract MUELLER Alloy 1450 (formerly MBCo Alloy 799) is a high-conductivity copper containing sufficient small copper telluride particles to provide free-machining characteristics superior to those of any other high-conductivity copper. It has the same general corrosion resistance as copper. It is used widely for electrical or thermal conductors requiring extensive machining and for screw-machine products requiring a color that matches pure copper. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-389. Producer or source: Mueller Brass Company.


Alloy Digest ◽  
2008 ◽  
Vol 57 (3) ◽  

Abstract Ansonia alloy C14500 has unique fabrication properties while maintaining both physical and mechanical properties close to pure copper. The addition of Tellurium makes the alloy free machining. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength. It also includes information on forming, heat treating, machining, and joining. Filing Code: CU-752. Producer or source: Ansonia Copper & Brass Inc.


Alloy Digest ◽  
1965 ◽  
Vol 14 (9) ◽  

Abstract MALLORY 53B is an economical copper alloy combining high strength with high heat and electrical conductivity and excellent corrosion resistance. It is heat treatable. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Cu-155. Producer or source: P. R. Mallory & Company Inc..


Alloy Digest ◽  
1977 ◽  
Vol 26 (6) ◽  

Abstract TECHALLOY Nickel 200 is commercially pure wrought nickel. It maintains good strength at elevated temperatures and is tough and ductile at low temperatures. It is a general-purpose material when the properties of nickel alloys are not needed. Its many uses include spun and cold-formed parts, electrical components, transducers and nickel-cadmium batteries. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-246. Producer or source: Techalloy Company Inc..


Alloy Digest ◽  
1982 ◽  
Vol 31 (4) ◽  

Abstract CRUCIBLE 309 is a non-hardenable austenitic chromium-nickel steel that has high heat-resisting characteristics. In the annealed condition it is non-magnetic or magnetic, depending on the composition. When cold worked it is very slightly magnetic. Typical applications include aircraft heaters and sulfite liquor handling equipment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: SS-405. Producer or source: Crucible Specialty Metals Division, Colt Industries.


2021 ◽  
Vol 1 ◽  
pp. 2571-2580
Author(s):  
Filip Valjak ◽  
Angelica Lindwall

AbstractThe advent of additive manufacturing (AM) in recent years have had a significant impact on the design process. Because of new manufacturing technology, a new area of research emerged – Design for Additive Manufacturing (DfAM) with newly developed design support methods and tools. This paper looks into the current status of the field regarding the conceptual design of AM products, with the focus on how literature sources treat design heuristics and design principles in the context of DfAM. To answer the research question, a systematic literature review was conducted. The results are analysed, compared and discussed on three main points: the definition of the design heuristics and the design principles, level of support they provide, as well as where and how they are used inside the design process. The paper highlights the similarities and differences between design heuristics and design principles in the context of DfAM.


Sign in / Sign up

Export Citation Format

Share Document