scholarly journals Deploying CPU-Intensive Applications on MEC in NFV Systems: The Immersive Video Use Case

Computers ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 55 ◽  
Author(s):  
Giorgio Cattaneo ◽  
Fabio Giust ◽  
Claudio Meani ◽  
Daniele Munaretto ◽  
Pietro Paglierani

Multi-access Edge Computing (MEC) will be a technology pillar of forthcoming 5G networks. Nonetheless, there is a great interest in also deploying MEC solutions in current 4G infrastructures. MEC enables data processing in proximity to end users. Thus, latency can be minimized, high data rates locally achieved, and real-time information about radio link status or consumer geographical position exploited to develop high-value services. To consolidate network elements and edge applications on the same virtualization infrastructure, network operators aim to combine MEC with Network Function Virtualization (NFV). However, MEC in NFV integration is not fully established yet: in fact, various architectural issues are currently open, even at standardization level. This paper describes a novel MEC in an NFV system which successfully combines, at management level, MEC functional blocks with an NFV Orchestrator, and can neutrally support any “over the top” Mobile Edge application with minimal integration effort. A specific ME app combined with an end-user app for the provision of immersive video services is presented. To provide low latency, CPU-intensive services to end users, the proposed architecture exploits High-Performance Computing resources embedded in the edge infrastructure. Experimental results showing the effectiveness of the proposed architecture are reported and discussed.

2019 ◽  
Vol 214 ◽  
pp. 07029
Author(s):  
David Ojika ◽  
Ann Gordon-Ross ◽  
Herman Lam ◽  
Bhavesh Patel

Field-programmable gate arrays (FPGAs) have largely been used in communication and high-performance computing and given the recent advances in big data and emerging trends in cloud computing (e.g., serverless [18]), FPGAs are increasingly being introduced into these domains (e.g., Microsoft’s datacenters [6] and Amazon Web Services [10]). To address these domains’ processing needs, recent research has focused on using FPGAs to accelerate workloads, ranging from analytics and machine learning to databases and network function virtualization. In this paper, we present an ongoing effort to realize a high-performance FPGA-as-a-microservice (FaaM) architecture for the cloud. We discuss some of the technical challenges and propose several solutions for efficiently integrating FPGAs into virtualized environments. Our case study deploying a multithreaded, multi-user compression as a microservice using the FaaM architecture indicate that microservices-based FPGA acceleration can sustain high-performance compared to straightforward implementation with minimal to no communication overhead despite the hardware abstraction.


2019 ◽  
Vol 11 (3) ◽  
pp. 69 ◽  
Author(s):  
Aris Leivadeas ◽  
George Kesidis ◽  
Mohamed Ibnkahla ◽  
Ioannis Lambadaris

Network Function Virtualization (NFV) has revolutionized the way network services are offered to end users. Individual network functions are decoupled from expensive and dedicated middleboxes and are now provided as software-based virtualized entities called Virtualized Network Functions (VNFs). NFV is often complemented with the Cloud Computing paradigm to provide networking functions to enterprise customers and end-users remote from their premises. NFV along with Cloud Computing has also started to be seen in Internet of Things (IoT) platforms as a means to provide networking functions to the IoT traffic. The intermix of IoT, NFV, and Cloud technologies, however, is still in its infancy creating a rich and open future research area. To this end, in this paper, we propose a novel approach to facilitate the placement and deployment of service chained VNFs in a network cloud infrastructure that can be extended using the Mobile Edge Computing (MEC) infrastructure for accommodating mission critical and delay sensitive traffic. Our aim is to minimize the end-to-end communication delay while keeping the overall deployment cost to minimum. Results reveal that the proposed approach can significantly reduce the delay experienced, while satisfying the Service Providers’ goal of low deployment costs.


Author(s):  
I. Chih-Lin ◽  
Shuangfeng Han ◽  
Zhikun Xu ◽  
Qi Sun ◽  
Zhengang Pan

The 5G network is anticipated to meet the challenging requirements of mobile traffic in the 2020s, which are characterized by super high data rate, low latency, high mobility, high energy efficiency and high traffic density. This paper provides an overview of China Mobile’s 5G vision and potential solutions. Three key characteristics of 5G are analysed, i.e. super fast, soft and green. The main 5G R&D themes are further elaborated, which include five fundamental rethinkings of the traditional design methodologies. The 5G network design considerations are also discussed, with cloud radio access network, ultra-dense network, software defined network and network function virtualization examined as key potential solutions towards a green and soft 5G network. The paradigm shift to user-centric network operation from the traditional cell-centric operation is also investigated, where the decoupled downlink and uplink, control and data, and adaptive multiple connections provide sufficient means to achieve a user-centric 5G network with ‘no more cells’. The software defined air interface is investigated under a uniform framework and can adaptively adapt the parameters to well satisfy various requirements in different 5G scenarios.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hejun Xuan ◽  
Lei You ◽  
Zhenghui Liu ◽  
Yanling Li ◽  
Xiaokai Yang

Network function virtualization (NFV) technology can realize on-demand distribution of network resources and improve network flexibility. It has become one of the key technologies for next-generation communications. Virtual network function service chain (VNF-SC) deployment is an important problem faced by network function virtualization technology. In this paper, the problem, VNF deployment for VNF-SC, is investigated. First, a two-objective mathematical model, which maximizes balancing and reliability of SFC, is established. In this model, VNFs are divided into two classes, i.e., part of required VNFs in each VNF-SC is dependent, others are independent. Second, harmony search-based MOEA/D (HS-MOEA/D) is proposed to solve the model effectively. In HS-MOEA/D, Chebyshev decomposition mechanism is used to transform multiobjective optimization problem into a series of single-objective optimization subproblems. A new evolutionary strategy is deeply studied in order to propose a new harmony search (HS) algorithm. Finally, to show high performance of the proposed algorithm, a large number of experiments are conducted. The simulation results show that the proposed algorithm enhances the reliability of SFC and reduces the end-to-end delay.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 245
Author(s):  
Jayakumari J ◽  
Rakhi K J

With the widespread effective usage of LEDs the visible light communication (VLC) system has brought out an increasing interest in the field of wireless communication recently. VLC is envisioned to be an appealing substitute to RF systems because of the advantages of LEDs such as high communication security, rich spectrum, etc. For achieving bearable inter symbol interference (ISI) and high data rates, OFDM can be employed in VLC. In this paper, the performance of VLC system with popular unipolar versions of OFDM viz. Flip-OFDM and ACO-OFDM is analyzed in fading channels. From the simulation results it is seen that the Flip-OFDM-VLC system outperforms the ACO-OFDM-VLC system in terms of bit error rate and is well suited for future 5G applications.


Sign in / Sign up

Export Citation Format

Share Document