scholarly journals HS-MOEA/D: An Oriented Algorithm for Delay and Reliability VNF-SC Deployment

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hejun Xuan ◽  
Lei You ◽  
Zhenghui Liu ◽  
Yanling Li ◽  
Xiaokai Yang

Network function virtualization (NFV) technology can realize on-demand distribution of network resources and improve network flexibility. It has become one of the key technologies for next-generation communications. Virtual network function service chain (VNF-SC) deployment is an important problem faced by network function virtualization technology. In this paper, the problem, VNF deployment for VNF-SC, is investigated. First, a two-objective mathematical model, which maximizes balancing and reliability of SFC, is established. In this model, VNFs are divided into two classes, i.e., part of required VNFs in each VNF-SC is dependent, others are independent. Second, harmony search-based MOEA/D (HS-MOEA/D) is proposed to solve the model effectively. In HS-MOEA/D, Chebyshev decomposition mechanism is used to transform multiobjective optimization problem into a series of single-objective optimization subproblems. A new evolutionary strategy is deeply studied in order to propose a new harmony search (HS) algorithm. Finally, to show high performance of the proposed algorithm, a large number of experiments are conducted. The simulation results show that the proposed algorithm enhances the reliability of SFC and reduces the end-to-end delay.

2018 ◽  
Vol 7 (2.4) ◽  
pp. 190
Author(s):  
Prathamesh Purohit ◽  
Ruturaj Kadikar ◽  
M Susila ◽  
B Amutha

and it is growing towards integration of 5G technology in near future. Therefore, to improve the quality of experience for viewing the content over the internet requires dynamic allocation and adaptation of network resources in an optimized manner. Traditional IP networks are vertically integrated hence flexibility in network resources management is very less. Software-defined networking (SDN) as an emerging technology, which comes with the promise of the solution to dynamically govern various network resources by breaking this chain or hierarchy of vertical integration. Network function virtualization along with service chain optimization provides the solution to enhance the Quality of Experience (QoE) and Quality of Service (QoS). In this paper, we are proposing an approach to improve the QoE by ameliorating the service chain and data center parameters.  


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1342
Author(s):  
Borja Nogales ◽  
Miguel Silva ◽  
Ivan Vidal ◽  
Miguel Luís ◽  
Francisco Valera ◽  
...  

5G communications have become an enabler for the creation of new and more complex networking scenarios, bringing together different vertical ecosystems. Such behavior has been fostered by the network function virtualization (NFV) concept, where the orchestration and virtualization capabilities allow the possibility of dynamically supplying network resources according to its needs. Nevertheless, the integration and performance of heterogeneous network environments, each one supported by a different provider, and with specific characteristics and requirements, in a single NFV framework is not straightforward. In this work we propose an NFV-based framework capable of supporting the flexible, cost-effective deployment of vertical services, through the integration of two distinguished mobile environments and their networks: small sized unmanned aerial vehicles (SUAVs), supporting a flying ad hoc network (FANET) and vehicles, promoting a vehicular ad hoc network (VANET). In this context, a use case involving the public safety vertical will be used as an illustrative example to showcase the potential of this framework. This work also includes the technical implementation details of the framework proposed, allowing to analyse and discuss the delays on the network services deployment process. The results show that the deployment times can be significantly reduced through a distributed VNF configuration function based on the publish–subscribe model.


Informatics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 13
Author(s):  
Konstantinos Papadakis-Vlachopapadopoulos ◽  
Ioannis Dimolitsas ◽  
Dimitrios Dechouniotis ◽  
Eirini Eleni Tsiropoulou ◽  
Ioanna Roussaki ◽  
...  

With the advent of 5G verticals and the Internet of Things paradigm, Edge Computing has emerged as the most dominant service delivery architecture, placing augmented computing resources in the proximity of end users. The resource orchestration of edge clouds relies on the concept of network slicing, which provides logically isolated computing and network resources. However, though there is significant progress on the automation of the resource orchestration within a single cloud or edge cloud datacenter, the orchestration of multi-domain infrastructure or multi-administrative domain is still an open challenge. Towards exploiting the network service marketplace at its full capacity, while being aligned with ETSI Network Function Virtualization architecture, this article proposes a novel Blockchain-based service orchestrator that leverages the automation capabilities of smart contracts to establish cross-service communication between network slices of different tenants. In particular, we introduce a multi-tier architecture of a Blockchain-based network marketplace, and design the lifecycle of the cross-service orchestration. For the evaluation of the proposed approach, we set up cross-service communication in an edge cloud and we demonstrate that the orchestration overhead is less than other cross-service solutions.


2016 ◽  
Author(s):  
Georgios P Katsikas ◽  
Marcel Enguehard ◽  
Maciej Kuźniar ◽  
Gerald Q Maguire Jr. ◽  
Dejan Kostić

In this paper we introduce SNF, a framework that synthesizes (S) network function (NF) service chains by eliminating redundant I/O and repeated elements, while consolidating stateful cross layer packet operations across the chain. SNF uses graph composition and set theory to determine traffic classes handled by a service chain composed of multiple elements. It then synthesizes each traffic class using a minimal set of new elements that apply single-read-single-write and early-discard operations. Our SNF prototype takes a baseline state-of-the-art network functions virtualization (NFV) framework to the level of performance required for practical NFV service deployments. Software-based SNF realizes long (up to 10 NFs) and stateful service chains that achieve line-rate 40 Gbps throughput (up to 8.5x greater than the baseline NFV framework). Hardware-assisted SNF, using a commodity OpenFlow switch, shows that our approach scales at 40 Gbps for Internet Service Provider-level NFV deployments.


Author(s):  
Eric Debeau ◽  
Veronica Quintuna-Rodriguez

The ever-increasing complexity of networks and services advocates for the introduction of automation techniques to facilitate the design, the delivery, and the operation of such networks and services. The emergence of both network function virtualization (NFV) and software-defined networks (SDN) enable network flexibility and adaptability which open the door to on-demand services requiring automation. In aim of holding the increasing number of customized services and the evolved capabilities of public networks, the open network automation platform (ONAP), which is in open source, particularly addresses automation techniques while enabling dynamic orchestration, optimal resource allocation capabilities, and end-to-end service lifecycle management. This chapter addresses the key ONAP features that can be used by industrials and operators to automatically manage and orchestrate a wide set of services ranging from elementary network functions (e.g., firewalls) to more complex services (e.g., 5G network slices).


2019 ◽  
Vol 214 ◽  
pp. 07029
Author(s):  
David Ojika ◽  
Ann Gordon-Ross ◽  
Herman Lam ◽  
Bhavesh Patel

Field-programmable gate arrays (FPGAs) have largely been used in communication and high-performance computing and given the recent advances in big data and emerging trends in cloud computing (e.g., serverless [18]), FPGAs are increasingly being introduced into these domains (e.g., Microsoft’s datacenters [6] and Amazon Web Services [10]). To address these domains’ processing needs, recent research has focused on using FPGAs to accelerate workloads, ranging from analytics and machine learning to databases and network function virtualization. In this paper, we present an ongoing effort to realize a high-performance FPGA-as-a-microservice (FaaM) architecture for the cloud. We discuss some of the technical challenges and propose several solutions for efficiently integrating FPGAs into virtualized environments. Our case study deploying a multithreaded, multi-user compression as a microservice using the FaaM architecture indicate that microservices-based FPGA acceleration can sustain high-performance compared to straightforward implementation with minimal to no communication overhead despite the hardware abstraction.


Sign in / Sign up

Export Citation Format

Share Document