scholarly journals Influence of Alumina Air-Abrasion on Flexural and Shear Bond Strengths of CAD/CAM Composite

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 927
Author(s):  
Pirat Karntiang ◽  
Hiroshi Ikeda ◽  
Yuki Nagamatsu ◽  
Hiroshi Shimizu

The purpose of this study was to clarify the influence of alumina air-abrasion on flexural and bond strengths of CAD/CAM composites. The flexural strength (FS) of two brands of commercial CAD/CAM composites was investigated by the three-point bending test using two specimen designs: the single-bar according to the ISO standard and the bonded-double-bar fabricated by bonding two bars with a resin cement. The bond strength between the composites and the resin cement was measured by a conventional shear bond strength (SBS) test. The FS of single-bar specimens was significantly decreased by the air-abrasion. For the FS of the bonded-double-bar specimen, on the other hand, there was no significant difference between the specimens with/without air-abrasion. The SBS for the composites was significantly increased by air-abrasion. The results suggest that alumina air-abrasion improves the SBS of the composites while weakening its FS. Contrarily, the FS of the air-abraded composite did not decrease when the composites were bonded with the resin cement.

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7058
Author(s):  
Akane Chin ◽  
Masaomi Ikeda ◽  
Tomohiro Takagaki ◽  
Toru Nikaido ◽  
Alireza Sadr ◽  
...  

The purpose of this study was to evaluate the effect of one week of Computer-aided design/Computer-aided manufacturing (CAD/CAM) crown storage on the μTBS between resin cement and CAD/CAM resin composite blocks. The micro-tensile bond strength (μTBS) test groups were divided into 4 conditions. There are two types of CAD/CAM resin composite blocks, namely A block and P block (KATANA Avencia Block and KATANA Avencia P Block, Kuraray Noritake Dental, Tokyo, Japan) and two types of resin cements. Additionally, there are two curing methods (light cure and chemical cure) prior to the μTBS test—Immediate: cementation was performed immediately; Delay: cementation was conducted after one week of storage in air under laboratory conditions. The effect of Immediate and Delayed cementations were evaluated by a μTBS test, surface roughness measurements, light intensity measurements, water sorption measurements and Scanning electron microscope/Energy dispersive X-ray spectrometry (SEM/EDS) analysis. From the results of the μTBS test, we found that Delayed cementation showed significantly lower bond strength than that of Immediate cementation for both resin cements and both curing methods using A block. There was no significant difference between the two types of resin cements or two curing methods. Furthermore, water sorption of A block was significantly higher than that of P block. Within the limitations of this study, alumina air abrasion of CAD/CAM resin composite restorations should be performed immediately before bonding at the chairside to minimize the effect of humidity on bonding.


2014 ◽  
Vol 15 (6) ◽  
pp. 688-692 ◽  
Author(s):  
Sukumaran Anil ◽  
Farouk Ahmed Hussein ◽  
Mohammed Ibrahim Hashem ◽  
Elna P Chalisserry

ABSTRACT Objective The purpose of the current in-vivo study was to assess the effect of using 0.12% chlorhexidine (CHX) mouth rinse, before bonding, on shear bond strength of polycarbonate brackets bonded with composite adhesive. Subjects and methods Eighteen orthodontic patients with a mean age 21.41 ± 1.2 years, who were scheduled to have 2 or more first premolars extracted, were included in this study. Patients were referred for an oral prophylaxis program which included, in part, the use of a mouth rinse. Patients were divided into 2 groups, a test group of 9 patients who used 0.12% CHX gluconate mouth rinse twice daily and a control group of 9 patients who used a mouth rinse without CHX, but with same color. After 1 week, polycarbonate brackets were bonded to first premolars with Transbond XT composite adhesive. Premolars were extracted after 28 days and tested for shear bond strength on a universal testing machine. Student's t-test was used to compare shear bond strengths of both groups. Results No statistically significant difference was found in bond strengths’ values between both groups. The test group (with CHX) has mean shear bond strength of 14.21 ± 2.42 MPa whereas the control group (without CHX) revealed a mean strength of 14.52 ± 2.31 MPa. Conclusion The use of 0.12% CHX mouth rinse, for one week before bonding, did not affect the shear bond strength of polycarbonate brackets bonded with Transbond composite. Furthermore, these brackets showed clinically acceptable bond strength. How to cite this article Hussein FA, Hashem MI, Chalisserry EP, Anil S. The Impact of Chlorhexidine Mouth Rinse on the Bond Strength of Polycarbonate Orthodontic Brackets. J Contemp Dent Pract 2014;15(6):688-692.


2016 ◽  
Vol 29 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Li Zhou ◽  
Yuetong Qian ◽  
Kang Gan ◽  
Hong Liu ◽  
Xiuju Liu ◽  
...  

This study was designed to evaluate the shear bond strength of an adhesive/composite system subjected to different pretreated polyetheretherketone (PEEK) surfaces using different thermocycling conditioning methods. A total of 128 specimens were equally divided into four main groups ( n = 32/group): control (no pretreatment), air abrasion, argon plasma pretreatment, and femtosecond laser groups. The surface topographies and surface roughness were observed by atomic force microscopy after different pretreatments. The specimens were bonded with SE Bond/Clearfil AP-X™. All bonded specimens were stored in distilled water at 37°C for 24 h. Afterward, each group was divided into three subgroups ( n = 8/group) as follows: (a) stored in water for 56 h (37°C); (b) thermal aging for 5000 cycles (5°C/55°C); and (c) thermal aging for 10,000 cycles (5°C/55°C). The shear bond strengths were measured. Air abrasion, argon plasma pretreatment, and femtosecond laser significantly strengthened the bond of SE Bond/Clearfil AP-X™ to PEEK composite compared with that without additional pretreatment. In the same surface pretreatment, the shear bond strengths of specimens conditioned using water storage were higher than that using thermocycles (TCs). Additionally, the specimens with 5000 TC showed significantly higher shear bond strength than that with 10000 TC.


2018 ◽  
Vol 6 (3) ◽  
pp. 548-553 ◽  
Author(s):  
Bandar M. A. Al–Makramani ◽  
Abdul A. A. Razak ◽  
Mohamed I. Abu–Hassan ◽  
Fuad A. Al–Sanabani ◽  
Fahad M. Albakri

BACKGROUND: The selection of the appropriate luting cement is a key factor for achieving a strong bond between prepared teeth and dental restorations.AIM: To evaluate the shear bond strength of Zinc phosphate cement Elite, glass ionomer cement Fuji I, resin-modified glass ionomer cement Fuji Plus and resin luting cement Panavia-F to Turkom-Cera all-ceramic material.MATERIALS AND METHODS: Turkom-Cera was used to form discs 10mm in diameter and 3 mm in thickness (n = 40). The ceramic discs were wet ground, air - particle abraded with 50 - μm aluminium oxide particles and randomly divided into four groups (n = 10). The luting cement was bonded to Turkom-Cera discs as per manufacturer instructions. The shear bond strengths were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The data were analysed using the tests One Way ANOVA, the nonparametric Kruskal - Wallis test and Mann - Whitney Post hoc test.RESULTS: The shear bond strength of the Elite, Fuji I, Fuji Plus and Panavia F groups were: 0.92 ± 0.42, 2.04 ± 0.78, 4.37 ± 1.18, and 16.42 ± 3.38 MPa, respectively. There was the statistically significant difference between the four luting cement tested (p < 0.05).CONCLUSION: the phosphate-containing resin cement Panavia-F exhibited shear bond strength value significantly higher than all materials tested.


2020 ◽  
Vol 22 (2) ◽  
Author(s):  
Andrzej Małysa ◽  
Joanna Weżgowiec ◽  
Dariusz Danel ◽  
Klauss Boening ◽  
Katarzyna Walczak ◽  
...  

Purpose: The aim of the study was to evaluate the shear bond strength of CAD/CAM ceramics to dentin after cementation with conventional or self-adhesive resin cements. Methods: Three self-adhesive, self-etching cements (Panavia SA, RelyX U200, Maxcem Elite), and one conventional cement (Panavia V5), were selected to lute three CAD/CAM ceramics (IPS Empress CAD, IPS e.max CAD, IPS e.max ZirCAD) onto the dentin. The bond strength was evaluated using a shear strength test according to the PN-EN ISO 29022:2013-10. Evaluation of the differences was performed using the Statistica software. Failure modes were analyzed using a light microscope. Results: All the studied cements differed (regardless of the ceramic type) in the bond strength. The highest bond strength was observed in Panavia V5, lower – in RelyX U200 and Panavia SA, and the lowest – in Maxcem. For IPS e.max ZirCAD, it was observed that compared to Panavia V5, the other cements were characterized by a significantly higher bond strength. For the IPS Empress CAD and the IPS e.max CAD, Panavia V5 displayed the highest bond strength. For all the studied self-adhesive cements, the failure of adhesion between the cement and dentin was predominant mode. Conclusions: Significant differences were found in the shear bond strengths of the CAD/CAM ceramics luted to dentin using tested self-adhesive and conventional cements. The bond strength depended on the combination of ceramic and cement. The IPS e.max ZirCAD had the highest bond strength to dentin after cementation with RelyX U200, while the IPS Empress CAD and IPS e.max CAD – with Panavia V5.


2019 ◽  
Vol 18 ◽  
pp. e190918
Author(s):  
Michele Mirian May ◽  
Ana Maria Estivalete Marchionatti ◽  
Luiz Felipe Valandro ◽  
Edson Luiz Foletto ◽  
Lucio Strazzabosco Dorneles ◽  
...  

Aim: This study evaluated the effect of surface treatments of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics on their bond strength to a resin cement. Methods: Seventy zirconia blocks (6 × 6 × 2 mm3, IPS e.max ZirCAD) were assigned into 7 groups (n=10) – as-sintered (AS), no treatment; tribochemical silica coating + silanization (TBS; Cojet-sand; ProSil); airabrasion with 45 μm alumina particles + universal primer (AAP; Monobond®Plus); fusion sputtering (FS); SiO2 nanofilm + silanization (SN; ProSil); FS+SN+ silanization (FSSN; ProSil); FS+SN+Universal Primer (FSSNP; Monobond®Plus). Afterwards, a resin cement (RelyX™ ARC) was applied inside cylinders (Ø = 0.96 mm × 1 mm height) placed on the zirconia surfaces. Microshear bond strength tests (μSBS) were carried out (1 mm/min). Failure and phase transformation analysis were performed. Bond strength data (MPa) were subjected to Kruskal-Wallis/Mann Whitney tests. Results: TBS (27 ± 1.2) and AAP (24.7 ± 0.8) showed higher bond strengths than the other groups, followed by FSSNP (15.5 ± 4.2) and FSSN (13.3 ± 3.6). FS (3.4 ± 0.44) and SN (9.5 ± 2.7) showed the lowest values (p < 0.001). Most of the specimens exhibited an adhesive failure. Conclusion: Air-abrasion by silica-coated alumina particles followed by silanization or by alumina particles followed by universal primer resulted in the highest resin bond strength to zirconia. Fusion sputtering and silica nanofilm deposition induced low strengths. However, when these methods are applied in combination and with a primer (FSSN and FSSNP), higher bond strengths may be achieved. Low bond strengths are obtained when no zirconia treatment is performed.


2005 ◽  
Vol 16 (3) ◽  
pp. 202-206 ◽  
Author(s):  
Ricardo Alves do Prado ◽  
Heitor Panzeri ◽  
Alfredo Julio Fernandes Neto ◽  
Flávio Domingues das Neves ◽  
Marlete Ribeiro da Silva ◽  
...  

The continuous technological advance and increasing availability of new base metal alloys and ceramic systems in the market, coupled to the demands of daily clinical practice, have made the constant evaluation of the bond strength of metal/porcelain combinations necessary. This study evaluated the metal/porcelain shear bond strength of three ceramic systems (Duceram, Williams and Noritake) in combination with three nickel-chromium (Ni-Cr) alloys (Durabond, Verabond and Viron). Thirty cast cylinder specimens (15 mm high; 6 mm in diameter) were obtained for each alloy, in a way that 10 specimens of each alloy were tested with each porcelain. Bond strength was measured with an Emic screw-driven mechanical testing machine by applying parallel shear forces to the specimens until fracture. Shear strength was calculated using the ratio of the force applied to a demarcated area of the opaque layer. Mann-Whitney U test was used for statistical analysis of the alloy/ceramic combinations (p<0.05). Viron/Noritake had the highest shear bond sregnth means (32.93 MPa), while Verabond/Duceram (16.31 MPa) presented the lowest means. Viron/Noritake differed statistically from other combinations (p<0.05). Viron/Duceram had statistically significant higher bond strengths than Verabond/Duceram, Verabond/Williams and Durabond/Noritake (p<0.05). It was also found significant difference (p<0.05) between Verabond/Noritake, Verabond/Duceram and Durabond/Noritake. No statistically significant difference (p>0.05) were observed among the other combinations. In conclusion, the Noritake ceramic system used together with Viron alloy presented the highest resistance to shear forces, while Duceram bonded to Verabond presented the lowest bond strength. Viron/Duceram and Verabond/Noritake provided intermediate results. The combinations between the Williams ceramic system and Ni-Cr alloys had similar shear strengths among each other.


2009 ◽  
Vol 79 (5) ◽  
pp. 945-950 ◽  
Author(s):  
Ding Xiaojun ◽  
Lu Jing ◽  
Guo Xuehua ◽  
Ruan Hong ◽  
Yu Youcheng ◽  
...  

Abstract Objective: To evaluate the effect of casein phosphopeptide–amorphous calcium phosphate (CPP-ACP) paste on shear bond strength and debonding failure modes of orthodontic brackets. Materials and Methods: Freshly extracted premolars were randomly divided into four groups (n =18) as follows: in groups 1 and 3, the enamel was treated with a solution of CPP-ACP dissolved in artificial saliva; groups 2 and 4 served as controls, and the enamel was treated with artificial saliva. After conventional acid etching, in groups 1 and 2, brackets were bonded using a light-cured bonding system (Blugloo); while in groups 3 and 4, brackets were bonded using a conventional bonding system (Unite Bonding Adhesive). Bonded specimens were subjected to thermal cycling for 1000 cycles before debonding procedures. After debonding, teeth and brackets were examined under a stereomicroscope at 10× magnification to determine whether any adhesive remained, in accordance with the adhesive remnant index. The acid-etched enamel surfaces were also observed using scanning electron microscopy after treatment with and without CPP-ACP paste. Results: The shear bond strengths of group 1 were significantly higher than those seen in group 2 (P &lt; .01). There was no significant difference in the shear bond strengths of groups 3 and 4 (P &gt; .05). Scanning electron microscopic observation showed that the pretreated enamel surface was rougher than that of the control surface after acid etching. Conclusion: The use of CPP-ACP can be considered as an alternative prophylactic application in orthodontic practice since it did not compromise bracket bond strength.


Sign in / Sign up

Export Citation Format

Share Document