scholarly journals Large Delta T Thermal Cycling Induced Stress Accelerates Equilibrium and Transformation in Super DSS

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 962
Author(s):  
Ping-Jui Yu ◽  
Shih-Che Chen ◽  
Hung-Wei Yen ◽  
Horng-Yi Chang ◽  
Jer-Ren Yang ◽  
...  

Based on the predicted phase diagram of super duplex stainless steel (DSS) calculated by Thermo-Calc, the maximum peak temperature 1100 °C was selected to ensure no σ phase existence. This target temperature fell into the two-phase solid solution (SS) region. A series of different thermal cycling tests were carried out with the notations of 2SS, 2SS + 3 cycles, 2SS + 7 cycles, 2SS + 13 cycles, and 2SS + 20 cycles. It was found that the trend of two-phase volume ratio variation by thermal cycling followed the predicted thermodynamic equilibrium trend. After 2SS + 7 cycles, the ratio of two-phase δ/γ tended toward the ideal 1:1. According to the electron backscatter diffraction (EBSD) analysis, the δ phase crystal orientation changed from the most frequent directions of <001> and <111> of the as-received sample to the most frequent orientation of <113> after two SS treatments. While the γ phase grain always remained at <101> orientation. The grain boundary misorientation angles of the γ grains were relatively stable, ranging from 53° to 63°, but those of the δ grains were widely distributed actively presuming the lattice rotation. The Kernel Average Misorientation (KAM) value of the local strain in face center cubic (fcc) γ grains was varied and greater than that of the body center cubic (bcc) δ phase, indicating that the former, with a large grain boundary misorientation had larger local deformation than the latter, which possesses wide random misorientation angle distribution.

Author(s):  
D. B. Williams ◽  
A. D. Romig

The segregation of solute or imparity elements to grain boundaries can occur by three well-defined processes. The first is Gibbsian segregation in which an element of minimal matrix solubility confines itself to a monolayer at the grain boundary. Classical examples include Bi in Cu and S or P in Fe. The second process involves the depletion of excess matrix solute by volume diffusion to the boundary. In the boundary, the solute atoms diffuse rapidly to precipitates, causing them to grow by the ‘collector-plate mechanism.’ Such grain boundary diffusion is thought to initiate “Diffusion-Induced Grain Boundary Migration,” (DIGM). This process has been proposed as the origin of eutectoid transformations or discontinuous grain boundary reactions. The third segregation process is non-equilibrium segregation which result in a solute build-up around the boundary because of solute-vacancy interactions.All of these segregation phenomena usually occur on a sub-micron scale and are often affected by the nature of the grain boundary (misorientation, defect structure, boundary plane).


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5715
Author(s):  
Jun Ding ◽  
Sheng-Lai Zhang ◽  
Quan Tong ◽  
Lu-Sheng Wang ◽  
Xia Huang ◽  
...  

The effects of grain boundary misorientation angle (θ) on mechanical properties and the mechanism of plastic deformation of the Ni/Ni3Al interface under tensile loading were investigated using molecular dynamics simulations. The results show that the space lattice arrangement at the interface is dependent on grain boundary misorientations, while the interfacial energy is dependent on the arrangement. The interfacial energy varies in a W pattern as the grain boundary misorientation increases from 0° to 90°. Specifically, the interfacial energy first decreases and then increases in both segments of 0–60° and 60–90°. The yield strength, elastic modulus, and mean flow stress decrease as the interfacial energy increases. The mechanism of plastic deformation varies as the grain boundary misorientation angle (θ) increases from 0° to 90°. When θ = 0°, the microscopic plastic deformation mechanisms of the Ni and Ni3Al layers are both dominated by stacking faults induced by Shockley dislocations. When θ = 30°, 60°, and 80°, the mechanisms of plastic deformation of the Ni and Ni3Al layers are the decomposition of stacking faults into twin grain boundaries caused by extended dislocations and the proliferation of stacking faults, respectively. When θ = 90°, the mechanisms of plastic deformation of both the Ni and Ni3Al layers are dominated by twinning area growth resulting from extended dislocations.


Sign in / Sign up

Export Citation Format

Share Document