scholarly journals Effects of High-Volume Ground Slag Powder on the Properties of High-Strength Concrete under Different Curing Conditions

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 348
Author(s):  
Yuqi Zhou ◽  
Jianwei Sun ◽  
Zengqi Zhang

Massive high-strength concrete structures tend to have a high risk of cracking. Ground slag powder (GSP), a sustainable and green industrial waste, is suitable for high-strength concrete. We carried out an experimental study of the effects of GSP with a specific surface area of 659 m2/kg on the hydration, pore structure, compressive strength and chloride ion penetrability resistance of high-strength concrete. Results show that adding 25% GSP increases the adiabatic temperature rise of high-strength concrete, whereas adding 45% GSP decreases the initial temperature rise. Incorporating GSP refines the pore structure to the greatest extent and improves the compressive strength and chloride ion penetrability resistance of high-strength concrete, which is more obvious under early temperature-matching curing conditions. Increasing curing temperature has a more obvious impact on the pozzolanic reaction of GSP than cement hydration. From a comprehensive perspective, GSP has potential applications in the cleaner production of green high-strength concrete.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Keun-Hyeok Yang ◽  
Jae-Sung Mun ◽  
Myung-Sug Cho

This study examined the relative strength-maturity relationship of high-strength concrete (HSC) specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1) isothermal curing conditions of 5°C, 20°C, and 40°C and (2) terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.


2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 932
Author(s):  
Huu-Bang Tran ◽  
Van-Bach Le ◽  
Vu To-Anh Phan

This paper presents the experimental results of the production of Nano-SiO2 (NS) from rice husk ash (RHA) and the engineering properties of High Strength Concrete (HSC) containing various NS contents. Firstly, the mesoporous silica nanoparticles were effectively modulated from RHA using NaOH solution, and subsequently precipitated with HCl solution until the pH value reached 3. The optimum synthesis for the manufacture of SiO2 nanoparticles in the weight ratio of RHA/NaOH was 1:2.4, and the product was calcined at 550 °C for 2 h. The EDX, XRD, SEM, TEM, FT-IR, and BET techniques were used to characterize the NS products. Results revealed that the characteristics of the obtained NS were satisfactory for civil engineering materials. Secondly, the HSC was manufactured with the aforementioned NS contents. NS particles were added to HSC at various replacements of 0, 0.5, 1.0, 1.5, 2.0, and 2.5% by the mass of the binder. The water-to-binder ratio was remained at 0.3 for all mixes. The specimens were cured for 3, 7, 28, 25 days under 25 ± 2 °C and a relative humidity of 95% before testing compressive and flexural strengths. Chloride ion permeability was investigated at 28 and 56 days. Results indicated that the addition of NS dramatically enhanced compressive strength, flexural strength, chloride ion resistance, and reduced chloride ion permeability compared to control concrete. The optimal NS content was found at 1.5%, which yielded the highest strength and lowest chloride ion permeability. Next, the development of flexural and compressive strengths with an age curing of 3–28 days can be analytically described by a logarithmic equation with R2 ≥ 0.74. The ACI code was used, and the compressive strength at t-day was determined based on 28 days with R2 ≥ 0.95. The study is expected to solve the redundancy of waste RHA in southern Vietnam by making RHA a helpful additive when producing high-strength concrete and contributing meaningfully to a sustainable environment.


2012 ◽  
Vol 450-451 ◽  
pp. 1409-1414 ◽  
Author(s):  
Jun Jie Zeng ◽  
Zhong He Shui ◽  
Wan Ru Zhang ◽  
Zheng Leng

The experimental study was performed on the relationship between the mechanical and durability properties of high-strength concrete with metakaolin (MK) and slag. The compressive strength, chloride penetrability and pore structure of the OPC and the concrete with MK and slag were measured. It is found that MK can significantly increase the compressive strength, decrease the chloride ions migration coefficient and improve the pore structure of the steam cured high-strength concrete. The chloride resistance is improved obviously by 5% MK and further increase of the MK dosage performs a little change of the chloride migration coefficient. Better improvement effect on the mechanical and durability properties is obtained with the incorporation of 10% MK and 10% slag. Linear relationship is found between the coarse pore porosity and the compressive strength, while the chloride migration coefficient correlates well with the capillary pore volume.


2014 ◽  
Vol 905 ◽  
pp. 195-198 ◽  
Author(s):  
Keun Hyeok Yang ◽  
Jae Sung Mun ◽  
Jae Eun Jeong

The present study examined the in-place strength of high-strength concrete based on the relative strength-maturity relationship. The measured strength gain of high-strength concrete was compared with the predictions obtained from the modified maturity function to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. This study demonstrates that the compressive strength gain of concrete cured at the reference temperature (20°C) for an early age of 3 days is little affected by the subsequent curing temperature histories.


Sign in / Sign up

Export Citation Format

Share Document