Compressive Strength Development of High-Strength Concrete under Different Curing Temperatures

2014 ◽  
Vol 905 ◽  
pp. 195-198 ◽  
Author(s):  
Keun Hyeok Yang ◽  
Jae Sung Mun ◽  
Jae Eun Jeong

The present study examined the in-place strength of high-strength concrete based on the relative strength-maturity relationship. The measured strength gain of high-strength concrete was compared with the predictions obtained from the modified maturity function to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. This study demonstrates that the compressive strength gain of concrete cured at the reference temperature (20°C) for an early age of 3 days is little affected by the subsequent curing temperature histories.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Keun-Hyeok Yang ◽  
Jae-Sung Mun ◽  
Myung-Sug Cho

This study examined the relative strength-maturity relationship of high-strength concrete (HSC) specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1) isothermal curing conditions of 5°C, 20°C, and 40°C and (2) terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.


2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


10.14311/228 ◽  
2001 ◽  
Vol 41 (3) ◽  
Author(s):  
M. Safan ◽  
A. Kohoutková

The influence of different drying conditions on the compressive strength and strength development rates of high strength concrete up to an age of 28 days was evaluated. Two HSC mixes with and without silica fume addition were used to cast cubes of 10 cm size. The cubes were stored in different drying conditions until the age of testing at 3, 7, 28 days.


2019 ◽  
Vol 972 ◽  
pp. 84-90
Author(s):  
Makhmud Kharun ◽  
Dmitry D. Koroteev

Self-compacting high-strength concrete (SCHSC) is an innovative concrete that has superior physical and mechanical properties, and does not require vibration for placing and compaction. Heat treatment (HT) of SCHSC can significantly accelerate the strength growth during cast-in-situ construction, and allows to reduce the turnover of formwork, the labor costs for construction, and the construction period. The issue of strength development of SCHSC during HT has been studied. SCHSC of R28 = 100 MPa was studied. Test specimens were cured with HT by infrared rays for 7, 9, 11, 13, 16 and 24 hours. Then warmed specimens were tested for compressive strength after 0.5, 4, 12 and 24 hours of cooling period. Study was carried out on the basis of analyzing, generalizing and evaluations of experimental data. A mathematical model is proposed for determining the compressive strength of SCHSC after one day of curing with HT.


2015 ◽  
Vol 802 ◽  
pp. 214-219 ◽  
Author(s):  
Aktham Hatem Alani ◽  
Megat Azmi Megat Johari

The influence of silica fume (SF) inclusion on the compressive strength development of high strength concrete (HSC) containing high volume of palm oil fuel ash (POFA) has been investigated. A HSC containing 100% ordinary Portland cement (OPC) and another HSC mix with 50% POFA as part of the binder were prepared. Due to the reduction in early strength of the HSC with the inclusion of high volume of POFA in the binary blended binder HSC, attempt was made to partially replace the OPC with SF at 5, 10, 15 and 20%, thus creating a ternary blended binder HSC. The results show that the compressive strength development of the HSC containing high volume of POFA was significantly improved with the inclusion of SF. The ternary blended binder HSC with 15% SF exhibited the highest increase in early age strength, even though it did not surpass the OPC-HSC, and it provided the highest strength at 7 and 28 days in comparison to other HSC mixes. Thus, ternary blended binder containing more than 60% supplementary cementitious material (POFA and SF) could be utilized to produce HSC.


Author(s):  
Girts Bumanis ◽  
Nikolajs Toropovs ◽  
Laura Dembovska ◽  
Diana Bajare ◽  
Aleksandrs Korjakins

The influence of heat treatment during curing process of ultra high strength concrete (UHSC) was researched. Four different heat treatment temperatures ranging from 50 to 200 °C were studied and compared to the reference temperature regime (20 °C).  Two series of heat treatment were applied: (a) at the early age of UHSC (3 days) and (b) after 27 days of standard curing regime in water at 20 °C. Concrete compressive strength was tested at the early age (4 days) and at the age of 28 days. The water absorption and water penetration under pressure were tested for heat treated and untreated UHSC specimens. SEM and XRD investigations of the studied samples were performed. UHSC with the strength of 123 MPa at the age of 28 days was tested at the standard curing conditions. Results indicate that early age curing at elevated temperature increases early compressive strength from 123 to 189% while at the age of 28 days the compressive strength was only 95 to 117% from reference and depends on the heat treatment regime. The heat treatment of UHSC at the age of 27 days was beneficial with regard to the strength development. Heat-treated UHSC provided compressive strength gain from 112 to 124% from reference. The water absorption for all UHSC specimens was from 2.6 to 3.2 wt.% and it was not affected by the heat treatment. The calcite was detected with XRD in heat treated UHSC samples which indicates the carbonization of Portlandite. This could explain the strength gain of heat-treated samples and the reason for slow compressive strength increase in the case of early heat treatment application. SEM images reveal dense structure and unreacted silica fume particles. The early heat treatment initiated high early strength but the strength of concrete reduced at the age of 28 days comparing to the early strength; therefore late heat application was beneficial for strength gain of the UHSC.


2020 ◽  
Vol 10 (18) ◽  
pp. 6261
Author(s):  
Taegyu Lee ◽  
Jaehyun Lee ◽  
Hyeonggil Choi

This study proposes model formulae for predicting the strength of concrete by analyzing the relationships between the results of nondestructive testing (NDT) methods and the compressive strength of concrete specimens at the hardened stage. Further, NDT of concrete molds and mock-up specimens was conducted using NDT methods (rebound hammer, ultrasonic pulse velocity). The water/cement (W/C) ratios were set to 0.48, 0.41, and 0.33 to achieve concrete strengths within the compressive strength range of 24–60 MPa. The evaluation parameters included the fresh concrete properties, compressive strength (mold and core), temperature history, maturity, rebound value, and ultrasonic pulse velocity. Evaluation results indicated that the reliability of existing models, based on the rebound and ultrasonic pulse velocity, is significantly low on high-strength concrete of 40 MPa or higher, and cannot satisfy the ±20% error range. Consequently, this study proposes a regression equation of the concrete strength based on the experimental rebound and ultrasonic pulse velocity values in a 24–60 MPa range, which offers satisfactory reliability.


1983 ◽  
Vol 10 (4) ◽  
pp. 600-613 ◽  
Author(s):  
Claude Bedard ◽  
Pierre-Claude Aitcin

It is possible to make in 1983 a field concrete in the Montreal area having a 28-day compressive strength of 120 MPa, using locally available materials.To obtain such a high compressive-strength concrete, it has been necessary to study the overall performances of 8 different cements, 3 types of sand, 16 types of aggregates, 3 types of superplasticizers, 9 grain-size distributions of the coarse aggregate, and 5 different ways of batching. An ultra high strength concrete is not obtained by chance, but through a long research effort planned in a laboratory as well as in the field.Such a concrete is feasible using: (1) high cement dosage of type 10, 20, or 30, according to the desired rate of compressive strength development; (2) a cubical coarse aggregate having a high compressive strength and an elastic modulus as near as possible as that of the mortar; (3) a manufactured sand having a high fineness modulus made from the same rock as the coarse aggregate; (4) a very high dosage of superplasticizer; and (5) 5 to 8% of condensed silica fume. The limited efficiency of the present industrial mixers (tilt mixers) for the very special mixes of this study is actually the main limitation for reaching a strength of 150 MPa. Keywords: high compressive strength concrete, superplasticizer, condensed silica fumes, manufactured sand, grain-sizes, aggregates, retarder, ready-mix concrete, precast plants.


Sign in / Sign up

Export Citation Format

Share Document