scholarly journals Study on the Performance of Synergistic Preparation of Sulphoaluminate Based Recycled Concrete by RP and RCA

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 748
Author(s):  
Zhenwen Hu ◽  
Qiuyi Li ◽  
Yuanxin Guo ◽  
Xiangling Lin ◽  
Junzhe Liu ◽  
...  

In this paper, the properties of sulphoaluminate based recycled concrete, with high workability and low and medium strength, prepared by recycled powder (RP), recycled coarse aggregate (RCA), and high belite sulphoaluminate cement (HBSAC), were systematically studied. Under the condition of a water binder ratio of 0.45, sulphoaluminate based recycled concrete, with different mix proportions, was prepared by replacing sulphoaluminate cement with RP and natural coarse aggregate (NCA) with RCA. The workability, mechanical properties, durability, and hydration products of the prepared concrete were analyzed. The results showed that when RP and RCA were used together, the workability of recycled concrete could fully meet the pumping demand in actual construction. When the mass replacement rate of RP was less than 30% and that of RCA was less than 20%, the strength of recycled concrete could completely reach the design strength grade, while those that did not reach the design strength grade could reach the next grade. The durability performance was also good.

2012 ◽  
Vol 166-169 ◽  
pp. 1614-1619 ◽  
Author(s):  
Wen Yue Qin ◽  
Yu Liang Chen ◽  
Zong Ping Chen

In order to reveal the flexural behavior of normal section of steel reinforced recycled coarse aggregate concrete beams,6 steel reinforced recycled concrete beams were designed for flexural test,the study mainly considered the impact of coarse aggregate replacement rates and concrete strength grade two changing parameters on the flexural behavior of steel reinforced recycled coarse aggregate concrete beams. Through this test, the whole mechanical process、crack distribution and failure behavior of this kind of specimens were observed, and obtained the stress-strain distribution curves、the ultimate bearing capacity and load-displacement curves parameters. Based on the study measurement data, deeply analyzed the impact of coarse aggregate replacement rates and concrete strength grade on the flexural behavior of steel reinforced recycled coarse aggregate concrete beams. The result shows that: steel reinforced recycled coarse aggregate concrete beams’ failure pattern was similar to normal SRC beams, during loading process the section strain agreed with the plane-section assumption, and the beams have good bearing capacity and deformation performance.


2015 ◽  
Vol 730 ◽  
pp. 11-14 ◽  
Author(s):  
Hai Long Zhang ◽  
Chang Chun Pei

By ANSYS finite element analysis we study the impact-span moment and deflection of high strength recycled concrete beam in state of initial cracking and yield with different water-cement ratio and recycled coarse aggregate replacement rate. The results showed that: 1With the increase of water-cement ratio and recycled coarse aggregate replacement rate, the deflection is on the rise. 2With the increase of recycled coarse aggregate replacement rate, the yield moment has a slight upward trend. And with the increase of water-cement ratio and recycled coarse aggregate replacement rate, the span deflection at the state of yield has a growing trend.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qianhui Xiao ◽  
Xiaolin Liu ◽  
Jisheng Qiu ◽  
Yangyang Li

In order to study the capillary water absorption characteristics of recycled concrete (RAC) with different replacement rates of recycled coarse aggregate (0, 20%, 40%, and 60%) in freeze-thaw environment, the standard test method of measuring the water absorption of hydraulic cement concrete (ASTM C1585-13) was adopted, and the influence mechanism of freeze-thaw cycle and replacement rate of recycled coarse aggregate on the capillary water absorption of RAC was analyzed, and a prediction model of initial capillary water absorption of RAC in freeze-thaw environment was established. The results show that when the freeze-thaw environment is the same, the greater the replacement rate of recycled coarse aggregate, the greater the cumulative water absorption of RAC, the faster the initial capillary water absorption, and the stronger the capillary water absorption; when the freeze-thaw environment is different, the more the freeze-thaw cycles, the greater the cumulative water absorption of RAC with the same replacement rate of recycled coarse aggregate, the faster the initial capillary water absorption, and the stronger the capillary water absorption. The prediction model of RAC initial capillary water absorption established by regression analysis has high accuracy, which can be used to predict RAC capillary water absorption performance and provide theoretical basis for the research of RAC frost resistance durability.


2011 ◽  
Vol 194-196 ◽  
pp. 1001-1006 ◽  
Author(s):  
Hai Feng Yang ◽  
Zhi Heng Deng ◽  
Xue Liang Li

24 100mm × 100mm × 300mm recycled concrete prisms and 96 150mm × 150mm × 150mm cubes are completed in this paper.The relationships of the carbonation depth in each carbonation age with replacement rate of recycled coarse aggregate and fly ash is studied; The SEM is used to observe the interface structure of recycled coarse aggregate concrete and compared with ordinary concrete, and finally,a recycled concrete carbonation model is proposed. The results showed that: the substitution of recycled coarse aggregate and fly ash cut down the recycled concrete carbonation resistance significantly, which are related with the replacement rate; the content of Ca(OH)2 in the recycled aggregate concrete decreased ,also there are obvious interface transition zone between the recycled coarse aggregate and the new cement;obvious cracks and large voids are exist before the recycled aggregate concrete is loaded, which lead directly to lower carbonation resistance of the recycled concrete.


2014 ◽  
Vol 487 ◽  
pp. 84-89
Author(s):  
Hai Long Ning ◽  
Wen Feng Zhao ◽  
Jian Liu ◽  
Shao Peng Jiao ◽  
Yi Xin Wang

To study the effect of recycled coarse aggregate, water-cement ratio and mixture ratio on the physico-mechanical properties of recycled concrete, determine the finial optimum mixture ratio and physico-mechanical properties of recycled concrete with the optimum mixture ratio, physico-mechanical tests are done on recycled concrete and conventional concrete. Results show that with the replacement rate increasing of recycled coarse aggregate, the compressive strength and splitting tensile strength of recycled concrete increase and then decrease. It is feasible to develop the concrete with 100% replacement rate of recycled coarse aggregate. With an increase of recycled coarse aggregate replacement rate, dry shrinkage ratio of concrete increases gradually, but the increasing range has little effect on the concrete. The concrete strength of 28 days is linear with water-cement ratio with the correlation coefficient is 0.98763. Taking appropriate mix design, the physico-mechanical properties of recycled concrete will surpass or be equivalent to those of conventional concrete. Recycled concrete of the optimum mixing rate is the high strength with lower brittleness.


2021 ◽  
Vol 13 (15) ◽  
pp. 8385
Author(s):  
Zhenwen Hu ◽  
Zhe Kong ◽  
Guisheng Cai ◽  
Qiuyi Li ◽  
Yuanxin Guo ◽  
...  

Solutions are needed to solve the problem of a large amount of construction solid waste and a shortage of natural aggregate (coarse and fine aggregates). In this paper, simple-crushed coarse aggregate (SCRCA) and simple-crushed fine aggregate (SCRFA) were obtained by simple-crushing of construction solid waste. On this basis, SCRCA and SCRFA were treated with particle-shaping to obtain particle-shaping coarse aggregate (PSRCA) and particle-shaping fine aggregate (PSRFA), and the recycled powder (RP) produced in the process of particle-shaping was collected. Under the condition of a 1:4 cement-sand ratio, RP was used to replace cement with four substitution rates of 0, 10%, 20%, and 30%, and dry-mixed masonry mortar was prepared with 100% SCRFA, PSRFA, and river sand (RS). The basic and mechanical properties and microstructure of hydration products of dry-mixed mortar were analyzed, and the maximum substitution rate of RP was determined. Under the condition that the amount of cementitious material is 400 kg/m3 and the RP is at the maximum replacement rate, three different aggregate combinations to prepare concrete are the 100% use of SCRCA and SCRFA, PSRCA and PSRFA, and RS and natural aggregate (NCA); the workability, mechanical properties, and aggregate interface transition zone of the prepared concrete were analyzed. The results show that when the replacement rate of RP is less than 20%, it has little effect on the properties of products. The performance of PSRCA and PSRFA after treatment is better than that of SCRCA and SCRFA. Under different RP substitution rates, the performance of dry-mixed mortar prepared with PSRFA is very close to that prepared with RS. The performance of recycled concrete prepared with PSRCA and PSRFA is also very close to that of products prepared with NCA and RS. The failure morphology of PSRCA and RSRFA concrete is also similar to that of NCA and RS concrete.


2020 ◽  
Vol 254 ◽  
pp. 119195 ◽  
Author(s):  
Matthew Zhi Yeon Ting ◽  
Kwong Soon Wong ◽  
Muhammad Ekhlasur Rahman ◽  
Meheron Selowara Joo

2020 ◽  
Vol 12 (24) ◽  
pp. 10544
Author(s):  
Chunhong Chen ◽  
Ronggui Liu ◽  
Pinghua Zhu ◽  
Hui Liu ◽  
Xinjie Wang

Carbonation durability is an important subject for recycled coarse aggregate concrete (RAC) applied to structural concrete. Extensive studies were carried out on the carbonation resistance of RAC under general environmental conditions, but limited researches investigated carbonation resistance when exposed to chloride ion corrosion, which is an essential aspect for reinforced concrete materials to be adopted in real-world applications. This paper presents a study on the carbonation durability of two generations of 100% RAC with the effect of chloride ion corrosion. The quality evolution of recycled concrete coarse aggregate (RCA) with the increasing recycling cycles was analyzed, and carbonation depth, compressive strength and the porosity of RAC were measured before and after chloride ion corrosion. The results show that the effect of chloride ion corrosion negatively affected the carbonation resistance of RAC, and the negative effect was more severe with the increasing recycling cycles of RCA. Chloride ion corrosion led to a decrease in compressive strength, while an increase in carbonation depth and the porosity of RAC. The equation of concrete total porosity and carbonation depth was established, which could effectively judge the deterioration of carbonation resistance of RAC.


Sign in / Sign up

Export Citation Format

Share Document