scholarly journals Advances of Yb:CALGO Laser Crystals

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1131
Author(s):  
Hao Wang ◽  
Jing Pan ◽  
Yuan Meng ◽  
Qiang Liu ◽  
Yijie Shen

Yb:CaGdAlO4, or Yb:CALGO, a new laser crystal, has been attracting increasing attention recently in a myriad of laser technologies. This crystal features salient thermal, spectroscopic and mechanical properties, which enable highly efficient and safe generation of continuous-wave radiations and ultrafast pulses with ever short durations. More specifically, its remarkable thermal-optic property and its high conversion efficiency allow high-power operation. Its high nonlinear coefficient facilitates study of optimized mode locking lasers. Besides, its ultrabroad and flat-top emission band benefits the generation of complex structured light with outstanding tunability. In this paper, we review the recent advances in the study of Yb:CALGO, covering its physical properties as well as its growing applications in various fields and prospect for future development.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 114
Author(s):  
Hui Zhao ◽  
Shibo Dai ◽  
Siqi Zhu ◽  
Hao Yin ◽  
Zhen Li ◽  
...  

In the past few decades, the multifunctional optical crystals for all-solid-state Raman lasers have been widely studied by many scholars due to their compactness, convenience and excellent performance. In this review, we briefly show two kinds of multifunctional Raman crystals: self-Raman (laser and Raman effects) crystals and self-frequency-doubled Raman (frequency-doubling and Raman effects) crystals. We firstly introduce the properties of the self-Raman laser crystals, including vanadate, tungstate, molybdate and silicate doped with rare earth ions, as well as self-frequency-doubled Raman crystals, including KTiOAsO4 (KTA) and BaTeMo2O9 (BTM). Additionally, the domestic and international progress in research on multifunctional Raman crystals is summarized in the continuous wave, passively Q-switched, actively Q-switched and mode-locked regimes. Finally, we present the bottleneck in multifunctional Raman crystals and the outlook for future development. Through this review, we contribute to a general understanding of multifunctional Raman crystals.


1991 ◽  
Vol 27 (8) ◽  
pp. 661 ◽  
Author(s):  
H. Hamada ◽  
M. Shono ◽  
S. Honda ◽  
R. Hiroyama ◽  
K. Matsukawa ◽  
...  

1998 ◽  
Vol 34 (10) ◽  
pp. 993 ◽  
Author(s):  
P.J. Williams ◽  
J.J. Lewandowski ◽  
D.J. Robbins ◽  
A.K. Wood ◽  
F.O. Robson ◽  
...  

Author(s):  
K. R. Wilt ◽  
H. A. Scarton ◽  
G. J. Saulnier ◽  
T. J. Lawry ◽  
J. D. Ashdown

Throughout the last few years there has been a significant push to develop a means for the transmission of electrical power through solid metallic walls using ultrasonic means. The bulk of this effort has been focused on using two coaxially aligned piezoelectric transducers on opposite sides of a thick metallic transmission barrier, where one transducer serves as the “transmit” transducer and the other as the “receive” transducer. Previous modeling has predicted reasonably high power transfer efficiencies through the wall using this type of “acoustic-electric channel” to be possible at low power levels, which implies that channel component operates in a linear range with little concern of failure. High-power testing of two acoustic-electric channels has been done in an effort to determine power limits on such channels and to determine levels at which non-linear effects on the piezoelectrics become non-negligible. The tested channels are characterized by the “power density” imposed on the transmit transducer, that is, the power applied per unit area, as the values found for maximum power density are considered to be independent of transducer radii. The constructed channels are shown to be capable of transmitting large amounts of power (over 100 watts) without failure; and further, extrapolation of the results to channels with larger diameter transducers predicts power transfer of 1 kW to be highly feasible.


Sign in / Sign up

Export Citation Format

Share Document