scholarly journals Feasibility on the Use of Radiomics Features of 11[C]-MET PET/CT in Central Nervous System Tumours: Preliminary Results on Potential Grading Discrimination Using a Machine Learning Model

2021 ◽  
Vol 28 (6) ◽  
pp. 5318-5331
Author(s):  
Giorgio Russo ◽  
Alessandro Stefano ◽  
Pierpaolo Alongi ◽  
Albert Comelli ◽  
Barbara Catalfamo ◽  
...  

Background/Aim: Nowadays, Machine Learning (ML) algorithms have demonstrated remarkable progress in image-recognition tasks and could be useful for the new concept of precision medicine in order to help physicians in the choice of therapeutic strategies for brain tumours. Previous data suggest that, in the central nervous system (CNS) tumours, amino acid PET may more accurately demarcate the active disease than paramagnetic enhanced MRI, which is currently the standard method of evaluation in brain tumours and helps in the assessment of disease grading, as a fundamental basis for proper clinical patient management. The aim of this study is to evaluate the feasibility of ML on 11[C]-MET PET/CT scan images and to propose a radiomics workflow using a machine-learning method to create a predictive model capable of discriminating between low-grade and high-grade CNS tumours. Materials and Methods: In this retrospective study, fifty-six patients affected by a primary brain tumour who underwent 11[C]-MET PET/CT were selected from January 2016 to December 2019. Pathological examination was available in all patients to confirm the diagnosis and grading of disease. PET/CT acquisition was performed after 10 min from the administration of 11C-Methionine (401–610 MBq) for a time acquisition of 15 min. 11[C]-MET PET/CT images were acquired using two scanners (24 patients on a Siemens scan and 32 patients on a GE scan). Then, LIFEx software was used to delineate brain tumours using two different semi-automatic and user-independent segmentation approaches and to extract 44 radiomics features for each segmentation. A novel mixed descriptive-inferential sequential approach was used to identify a subset of relevant features that correlate with the grading of disease confirmed by pathological examination and clinical outcome. Finally, a machine learning model based on discriminant analysis was used in the evaluation of grading prediction (low grade CNS vs. high-grade CNS) of 11[C]-MET PET/CT. Results: The proposed machine learning model based on (i) two semi-automatic and user-independent segmentation processes, (ii) an innovative feature selection and reduction process, and (iii) the discriminant analysis, showed good performance in the prediction of tumour grade when the volumetric segmentation was used for feature extraction. In this case, the proposed model obtained an accuracy of ~85% (AUC~79%) in the subgroup of patients who underwent Siemens tomography scans, of 80.51% (AUC 65.73%) in patients who underwent GE tomography scans, and of 70.31% (AUC 64.13%) in the whole patients’ dataset (Siemens and GE scans). Conclusions: This preliminary study on the use of an ML model demonstrated to be feasible and able to select radiomics features of 11[C]-MET PET with potential value in prediction of grading of disease. Further studies are needed to improve radiomics algorithms to personalize predictive and prognostic models and potentially support the medical decision process.

2015 ◽  
Vol 23 (5) ◽  
pp. 613-619 ◽  
Author(s):  
Kentaro Naito ◽  
Toru Yamagata ◽  
Hironori Arima ◽  
Junya Abe ◽  
Naohiro Tsuyuguchi ◽  
...  

OBJECT Although the usefulness of PET for brain lesions has been established, few reports have examined the use of PET for spinal intramedullary lesions. This study investigated the diagnostic utility of PET/CT for spinal intramedullary lesions. METHODS l-[methyl-11C]-methionine (MET)- or [18F]-fluorodeoxyglucose (FDG)-PET/CT was performed in 26 patients with spinal intramedullary lesions. The region of interest (ROI) within the spinal cord parenchyma was placed manually in the axial plane. Maximum pixel counts in the ROIs were normalized to the maximum standardized uptake value (SUVmax) using subject body weight. For FDG-PET the SUVmax was corrected for lean body mass (SULmax) to exclude any influence of the patient’s body shape. Each SUV was analyzed based on histopathological results after surgery. The diagnostic validity of the SUV was further compared with the tumor proliferation index using the MIB-1 monoclonal antibody (MIB-1 index). RESULTS A total of 16 patients underwent both FDG-PET and MET-PET, and the remaining 10 patients underwent either FDG-PET or MET-PET. Pathological diagnoses included high-grade malignancy such as glioblastoma multiforme, anaplastic astrocytoma, or anaplastic ependymoma in 5 patients; low-grade malignancy such as hemangioblastoma, diffuse astrocytoma, or ependymoma in 12 patients; and nonneoplastic lesion including cavernous malformation in 9 patients. Both FDG and MET accumulated significantly in high-grade malignancy, and the SULmax and SUVmax correlated with the tumor proliferation index. Therapeutic response after chemotherapy or radiation in high-grade malignancy was well monitored. However, a significant difference in SULmax and SUVmax for FDG-PET and MET-PET was not evident between low-grade malignancy and nonneoplastic lesions. CONCLUSIONS Spinal PET/CT using FDG or MET for spinal intramedullary lesions appears useful and practical, particularly for tumors with high-grade malignancy. Differentiation of tumors with low-grade malignancy from nonneoplastic lesions may still prove difficult. Further technological refinement, including the selection of radiotracer or analysis evaluation methods, is needed.


2019 ◽  
Vol 12 (1) ◽  
pp. e227969
Author(s):  
Paula Inês Pedro ◽  
Dolores Canário ◽  
Miguel Lopes ◽  
Despina Argyropoulou

Pulmonary mucoepidermoid carcinoma is an extremely rare intrathoracic malignancy, comprising less than 1% of all lung tumours. These are very slow growing and are classified into low grade and high grade based on histological features. Surgical resection is the primary treatment with excellent outcomes, while chemotherapy or radiotherapy effectiveness is not known. Preoperative fluorine-18 fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT) is useful for predicting tumour grade and postsurgical prognosis.A clinical case of a 31-year-old woman who presented with dyspnoea on exertion, cough and wheezing is reported. Imaging studies revealed a mass involving the left lower lobe bronchus and atelectasis. 18F-FDG PET/CT showed uptake in the described mass with a maximum standardised uptake value of 9.7. Complete surgical resection was performed, and pathological examination revealed a high-grade mucoepidermoid carcinoma with tumour-free margins. Adjuvant chemotherapy was given and there is no evidence of tumour recurrence.


2021 ◽  
Vol 11 ◽  
Author(s):  
Cheng Chang ◽  
Xiaoyan Sun ◽  
Gang Wang ◽  
Hong Yu ◽  
Wenlu Zhao ◽  
...  

ObjectivesAnaplastic lymphoma kinase (ALK) rearrangement status examination has been widely used in clinic for non-small cell lung cancer (NSCLC) patients in order to find patients that can be treated with targeted ALK inhibitors. This study intended to non-invasively predict the ALK rearrangement status in lung adenocarcinomas by developing a machine learning model that combines PET/CT radiomic features and clinical characteristics.MethodsFive hundred twenty-six patients of lung adenocarcinoma with PET/CT scan examination were enrolled, including 109 positive and 417 negative patients for ALK rearrangements from February 2016 to March 2019. The Artificial Intelligence Kit software was used to extract radiomic features of PET/CT images. The maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression were further employed to select the most distinguishable radiomic features to construct predictive models. The mRMR is a feature selection method, which selects the features with high correlation to the pathological results (maximum correlation), meanwhile retain the features with minimum correlation between them (minimum redundancy). LASSO is a statistical formula whose main purpose is the feature selection and regularization of data model. LASSO method regularizes model parameters by shrinking the regression coefficients, reducing some of them to zero. The feature selection phase occurs after the shrinkage, where every non-zero value is selected to be used in the model. Receiver operating characteristic (ROC) analysis was used to evaluate the performance of the models, and the performance of different models was compared by the DeLong test.ResultsA total of 22 radiomic features were extracted from PET/CT images for constructing the PET/CT radiomic model, and majority of these features used were based on CT features (20 out of 22), only 2 PET features were included (PET percentile 10 and PET difference entropy). Moreover, three clinical features associated with ALK mutation (age, burr and pleural effusion) were also employed to construct a combined model of PET/CT and clinical model. We found that this combined model PET/CT-clinical model has a significant advantage to predict the ALK mutation status in the training group (AUC = 0.87) and the testing group (AUC = 0.88) compared with the clinical model alone in the training group (AUC = 0.76) and the testing group (AUC = 0.74) respectively. However, there is no significant difference between the combined model and PET/CT radiomic model.ConclusionsThis study demonstrated that PET/CT radiomics-based machine learning model has potential to be used as a non-invasive diagnostic method to help diagnose ALK mutation status for lung adenocarcinoma patients in the clinic.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Dhaval Patel ◽  
Shrey Shrivastava ◽  
Wesley Gifford ◽  
Stuart Siegel ◽  
Jayant Kalagnanam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document