scholarly journals Actinobacteria from Extreme Niches in Morocco and Their Plant Growth-Promoting Potentials

Diversity ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 139 ◽  
Author(s):  
Ahmed Nafis ◽  
Anas Raklami ◽  
Noura Bechtaoui ◽  
Fatima El Khalloufi ◽  
Abdelkhalek El Alaoui ◽  
...  

The objectives of this study were to assess actinobacterial diversity in five Moroccan extreme habitats and to evaluate their plant growth-promoting (PGP) activities. The soil samples were collected from different locations, including soils contaminated with heavy metals, from a high altitude site, from the desert, and from a marine environment. In total, 23 actinobacteria were isolated, 8 from Merzouga sand soil; 5 from Cannabis sativa rhizospheric soil; 5 from Toubkal mountain; 4 from a Draa sfar mining site; and 1 from marine soil. Based on their genotypic classification using 16S rRNA gene sequences, 19 of all belonged to the genus Streptomyces (82%) while the rest are the members of the genera Nocardioides (4.5%), Saccharomonospora (4.5%), Actinomadura (4.5%), and Prauserella (4.5%). Isolates Streptomyces sp. TNC-1 and Streptomyces sp. MNC-1 showed the highest level of phosphorus solubilization activity with 12.39 and 8.56 mg/mL, respectively. All 23 isolates were able to solubilize potassium, and 91% of them could grow under nitrogen-free conditions. The ability of the isolated actinobacteria to form indole-3-acetic acid (IAA) ranged from 6.70 to 75.54 μg/mL with Streptomyces sp. MNC-1 being the best IAA producer. In addition, all of the actinobacteria could produce siderophores, with Saccharomonospora sp. LNS-1 synthesizing the greatest amount (138.92 μg/mL). Principal coordinate analysis revealed that Streptomyces spp. MNC-1, MNT-1, MNB-2, and KNC-5; Saccharomonospora sp. LNS-1; and Nocardioides sp. KNC-3 each showed a variety of high-level plant growth-promoting activities. The extreme environments in Morocco are rich with bioactive actinobacteria that possess a variety of plant growth-promoting potentials that can further benefit green and sustainable agriculture.

SpringerPlus ◽  
2013 ◽  
Vol 2 (1) ◽  
Author(s):  
Subramaniam Gopalakrishnan ◽  
Vadlamudi Srinivas ◽  
Meesala Sree Vidya ◽  
Abhishek Rathore

2018 ◽  
Author(s):  
Madhusmita Borah ◽  
Saurav Das ◽  
Himangshu Baruah ◽  
Robin C. Boro ◽  
Madhumita Barooah

AbstractIn this paper, we report the endophytic microbial diversity of cultivated and wild Oryza sativa plants including their functional traits related to multiple traits that promote plant growth and development. Around 255 bacteria were isolated out of which 70 isolates were selected for further studies based on their morphological differences. The isolates were characterized both at biochemical and at the molecular level by 16s rRNA gene sequencing. Based on 16S rRNA gene sequencing the isolates were categorized into three major phyla, viz, Firmicutes (57.1 %), Actinobacteria (20.0 %) and Proteobacteria (22.8 %). Firmicutes was the dominant group of bacteria of which the most abundant genus was Bacillus. The isolates were further screened in vitro for plant growth promoting activities which revealed a hitherto unreported endophytic bacterial isolate, Microbacteriaceae bacterium RS01 11 as the highest secretor of a phytohormone, IAA (28.39 ± 1.39 μg/ml) and GA (67.23 ± 1.83 μg/ml). Bacillus subtilis RHS 01 displayed highest phosphate solubilizing activity (81.70 ± 1.98 μg/ml) while, Microbacterium testaceum MK LS01, and Microbacterium trichothecenolyticum MI03 L05 exhibited highest potassium solubilizing activity (53.42±0.75μg/ml) and zinc solubilizing efficiency (157.50%) respectively. Bacillus barbaricus LP20 05 produced highest siderophore units (64.8 %). Potential plant growth promoting isolated were tested in vivo in pot culture under greenhouse conditions. A consortium consisting of Microbacteriaceae bacterium RS01 11, Bacillus testaceum MK LS01 and Bacillus subtilis RHS promoted plant growth and increased the yield 3.4 fold in rice when compared to control T0 when tested in pot culture and reduce application rates of chemical fertilizer to half the recommended dose. Our study confirms the potentiality of the rice endophytes isolated as good plant growth promoter and effective biofertilizer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sujit Shah ◽  
Krishna Chand ◽  
Bhagwan Rekadwad ◽  
Yogesh S. Shouche ◽  
Jyotsna Sharma ◽  
...  

Abstract Background A plant growth-promoting endophytic bacterium PVL1 isolated from the leaf of Vanda cristata has the ability to colonize with roots of plants and protect the plant. PVL1 was isolated using laboratory synthetic media. 16S rRNA gene sequencing method has been employed for identification before and after root colonization ability. Results Original isolated and remunerated strain from colonized roots were identified as Bacillus spp. as per EzBiocloud database. The presence of bacteria in the root section of the plantlet was confirmed through Epifluorescence microscopy of colonized roots. The in-vitro plantlet colonized by PVL1 as well as DLMB attained higher growth than the control. PVL1 capable of producing plant beneficial phytohormone under in vitro cultivation. HPLC and GC-MS analysis suggest that colonized plants contain Indole Acetic Acid (IAA). The methanol extract of Bacillus spp., contains 0.015 μg in 1 μl concentration of IAA. PVL1 has the ability to produce antimicrobial compounds such as ethyl iso-allocholate, which exhibits immune restoring property. One-way ANOVA shows that results were statistically significant at P ≤ 0.05 level. Conclusions Hence, it has been concluded that Bacillus spp. PVL1 can promote plant growth through secretion of IAA during root colonization and ethyl iso-allocholate to protect plants from foreign infections. Thus, this study supports to support Koch’s postulates of bacteria establishment.


2009 ◽  
Vol 329 (1-2) ◽  
pp. 421-431 ◽  
Author(s):  
Tania Taurian ◽  
María Soledad Anzuay ◽  
Jorge Guillermo Angelini ◽  
María Laura Tonelli ◽  
Liliana Ludueña ◽  
...  

Author(s):  
R. Thamizh Vendan ◽  
D. Balachandar

Background: Symbiotic associations between legumes and Rhizobia are ancient and fundamental. However, the plant growth-promoting endophytes other than Rhizobia are not yet fully explored for pulses productivity. The present study was aimed to isolate efficient endophytic bacteria from pulses, assess their diversity, screen their plant growth-promoting activities and to test their potential as bio inoculants for pulses.Methods: We have isolated several endophytic bacteria from pulse crops more specifically from blackgram (Vigna mungo) and greengram (Vigna radiata). After careful screening, 15 promising endophytic isolates were selected for this study. The identification of endophytic bacterial isolates was performed by 16S rRNA gene sequencing. The isolates were tested for their potential for the plant growth-promoting traits such as nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore secretion and antifungal activity. Pot culture experiments were conducted with the screened potential endophytic cultures.Result: The 16S rRNA gene sequencing revealed that species of Enterobacter, Bacillus, Pantoea, Pseudomonas, Acromobacter, Ocrobacterium were found as endophytes in blackgram and greengram. The in vitro screening identified Bacillus pumilus (BG-E6), Pseudomonas fluorescens (BG-E5) and Bacillus licheniformis (BG-E3) from blackgram and Pseudomonas chlororaphis (GG-E2) and Bacillus thuringiensis (GG-E7) from greengram as potential plant growth-promoting endophytes. These strains showed antagonism against plant pathogenic fungi. Upon inoculation of these endophytic PGPR strains, the blackgram and greengram growth and yield got increased. Among the strains, BG-E6 recorded 14.7% increased yield in blackgram and GG-E2 accounted for a 19.5% yield increase in greengram compared to respective uninoculated control. The experimental results showed that there was a host specificity found among the endophytic bacterial cultures with pulses. The cross inoculation of endophytic strains did not perform well to enhance the growth and yield of their alternate hosts. 


Soil Systems ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Anithadevi Kenday Sivaram ◽  
Logeshwaran Panneerselvan ◽  
Kannappar Mukunthan ◽  
Mallavarapu Megharaj

Pyroligneous acid (PA) is often used in agriculture as a plant growth and yield enhancer. However, the influence of PA application on soil microorganisms is not often studied. Therefore, in this study, we investigated the effect of PA (0.01–5% w/w in soil) on the microbial diversity in two different soils. At the end of eight weeks of incubation, soil microbial community dynamics were determined by Illumina-MiSeq sequencing of 16S rRNA gene amplicons. The microbial composition differed between the lower (0.01% and 0.1%) and the higher (1% and 5%) concentration in both PA spiked soils. The lower concentration of PA resulted in higher microbial diversity and dehydrogenase activity (DHA) compared to the un-spiked control and the soil spiked with high PA concentrations. Interestingly, PA-induced plant growth-promoting bacterial (PGPB) genera include Bradyrhizobium, Azospirillum, Pseudomonas, Mesorhizobium, Rhizobium, Herbaspiriluum, Acetobacter, Beijerinckia, and Nitrosomonas at lower concentrations. Additionally, the PICRUSt functional analysis revealed the predominance of metabolism as the functional module’s primary component in both soils spiked with 0.01% and 0.1% PA. Overall, the results elucidated that PA application in soil at lower concentrations promoted soil DHA and microbial enrichment, particularly the PGPB genera, and thus have great implications for improving soil health.


Author(s):  
Cun Yu ◽  
Ying Yao

Endophytic fungi were isolated from Phoebe bournei and their diversity and antimicrobial and plant growth-promoting activities were investigated. Of the 389 isolated endophytic fungi, 88.90% belonged to phylum Ascomycota and 11.10% to phylum Basidiomycota. The isolates were grouped into four taxonomic classes, 11 orders, 30 genera, and 45 species based on internal transcribed spacer sequencing and morphologic analysis. The host showed a strong affinity for the genera Diaporthe and Phyllosticta. The diversity of the fungi was highest in autumn, followed by spring and summer, and was lowest in winter. The fungi exhibited notable tissue specificity in P. bournei, and the species richness and diversity were highest in the root across all seasons. Five isolates showed antimicrobial activity against eight plant pathogens, and reduced the incidence of leaf spot disease in P. bournei. Additionally, 9 biocontrol isolates showed plant growth-promoting activity, with five significantly promoting P. bournei seedling growth. This is the first report on the endophytic fungi of P. bournei and their potential applicability to plant disease control and growth promotion.


Sign in / Sign up

Export Citation Format

Share Document