scholarly journals An Overview of DNA-Based Applications for the Assessment of Benthic Macroinvertebrates Biodiversity in Mediterranean Aquatic Ecosystems

Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 112
Author(s):  
Eftychia Tzafesta ◽  
Francesco Zangaro ◽  
Valeria Specchia ◽  
Maurizio Pinna

The loss of aquatic biodiversity is increasing at a rapid rate globally. There is a worldwide effort to protect, preserve and restore aquatic ecosystems. For efficient biodiversity monitoring and reliable management tools, comprehensive biodiversity data are required. The abundance and species diversity of benthic macroinvertebrates are commonly used as indicators of the aquatic ecosystem condition. Currently, macroinvertebrate species biodiversity assessment is based on morpho-taxonomy, which could be enhanced by recent advances in DNA-based tools for species identification. In particular, DNA metabarcoding has the potential to identify simultaneously many different taxa in a pool of species and to improve aquatic biomonitoring significantly, especially for indicator species. This review is focused on the current state of DNA-based aquatic biomonitoring using benthic macroinvertebrates in the Mediterranean region.

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 331
Author(s):  
Sofia Duarte ◽  
Barbara R. Leite ◽  
Maria João Feio ◽  
Filipe O. Costa ◽  
Ana Filipa Filipe

Benthic macroinvertebrates are among the most used biological quality elements for assessing the condition of all types of aquatic ecosystems worldwide (i.e., fresh water, transitional, and marine). Current morphology-based assessments have several limitations that may be circumvented by using DNA-based approaches. Here, we present a comprehensive review of 90 publications on the use of DNA metabarcoding of benthic macroinvertebrates in aquatic ecosystems bioassessments. Metabarcoding of bulk macrozoobenthos has been preferentially used in fresh waters, whereas in marine waters, environmental DNA (eDNA) from sediment and bulk communities from deployed artificial structures has been favored. DNA extraction has been done predominantly through commercial kits, and cytochrome c oxidase subunit I (COI) has been, by far, the most used marker, occasionally combined with others, namely, the 18S rRNA gene. Current limitations include the lack of standardized protocols and broad-coverage primers, the incompleteness of reference libraries, and the inability to reliably extrapolate abundance data. In addition, morphology versus DNA benchmarking of ecological status and biotic indexes are required to allow general worldwide implementation and higher end-user confidence. The increased sensitivity, high throughput, and faster execution of DNA metabarcoding can provide much higher spatial and temporal data resolution on aquatic ecological status, thereby being more responsive to immediate management needs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ofer Arazy ◽  
Dan Malkinson

Citizen science, whereby ordinary citizens participate in scientific endeavors, is widely used for biodiversity monitoring, most commonly by relying on unstructured monitoring approaches. Notwithstanding the potential of unstructured citizen science to engage the public and collect large amounts of biodiversity data, observers’ considerations regarding what, where and when to monitor result in biases in the aggregate database, thus impeding the ability to draw conclusions about trends in species’ spatio-temporal distribution. Hence, the goal of this study is to enhance our understanding of observer-based biases in citizen science for biodiversity monitoring. Toward this goals we: (a) develop a conceptual framework of observers’ decision-making process along the steps of monitor – > record and share, identifying the considerations that take place at each step, specifically highlighting the factors that influence the decisions of whether to record an observation (b) propose an approach for operationalizing the framework using a targeted and focused questionnaire, which gauges observers’ preferences and behavior throughout the decision-making steps, and (c) illustrate the questionnaire’s ability to capture the factors driving observer-based biases by employing data from a local project on the iNaturalist platform. Our discussion highlights the paper’s theoretical contributions and proposes ways in which our approach for semi-structuring unstructured citizen science data could be used to mitigate observer-based biases, potentially making the collected biodiversity data usable for scientific and regulatory purposes.


2021 ◽  
Vol 4 ◽  
Author(s):  
Valentin Vasselon ◽  
Éva Ács ◽  
Salomé Almeida ◽  
Karl Andree ◽  
Laure Apothéloz-Perret-Gentil ◽  
...  

During the past decade genetic approaches have been developed to monitor biodiversity in aquatic ecosystems. These enable access to taxonomic and genetic information from biological communities using DNA from environmental samples (e.g. water, biofilm, soil) and methods based on high-throughput sequencing technologies, such as DNA metabarcoding. Within the context of the Water Framework Directive (WFD), such approaches could be applied to assess Biological Quality Elements (BQE). These are used as indicators of the ecological status of aquatic ecosystems as part of national monitoring programs of the european network of 110,000 surface water monitoring sites with 79.5% rivers and 11% lake sites (Charles et al. 2020). A high-throughput method has the potential to increase our spatio-temporal monitoring capacity and to accelerate the transfer of information to water managers with the aim to increase protection of aquatic ecosystems. Good progress has been made with developing DNA metabarcoding approaches for benthic diatom assemblages. Technological innovation and protocol optimization have allowed robust taxonomic (species) and genetic (OTU, ESV) information to be obtained from which diatom quality indices can be calculated to infer ecological status to rivers and lakes. Diatom DNA metabarcoding has been successfully applied for biomonitoring at the scale of national river monitoring networks in several countries around the world and can now be considered technically ready for routine application (e.g. Apothéloz-Perret-Gentil et al. 2017, Bailet et al. 2019, Mortágua et al. 2019, Vasselon et al. 2019, Kelly et al. 2020, Pérez-Burillo et al. 2020, Pissaridou et al. 2021). However, protocols and methods used by each laboratory still vary between and within countries, limiting their operational transferability and the ability to compare results. Thus, routine use of DNA metabarcoding for diatom biomonitoring requires standardization of all steps of the metabarcoding procedure, from the sampling to the final ecological status assessment in order to define good practices and standards. Following previous initiatives which resulted in a CEN technical report for biofilm sampling and preservation (CEN 2018), a set of experiments was initiated during the DNAqua-Net WG2 diatom workshop (Cyprus, 2019) to focus on DNA extraction and PCR amplification steps in order to evaluate: i) the transferability and reproducibility of a protocol between different laboratories; ii) the variability introduced by different protocols currently applied by the scientific community. 19 participants from 14 countries performed DNA extraction and PCR amplification in parallel, using i) the same fixed protocol and ii) their own protocol. Experiments were performed by each participant on a set of standardized DNA and biofilm samples (river, lake, mock community). In order to specifically test the variability of DNA extraction and PCR amplification steps, all other steps of the metabarcoding process were fixed and the preparation of the Miseq sequencing was performed by only one laboratory. The variability within and between participants will be evaluated on DNA extracts quantity, taxonomic (genus, species) and genetic richness, community structure comparison and diatom quality index scores (IPS). We will also evaluate the variability introduced by different DNA extraction and PCR amplification protocols on diatom quality index scores and the final ecological status assessment. The results from this collaborative work will not serve to define “one protocol to rule them all”, but will provide valuable information to define guidelines and minimum requirements that should be considered when performing diatom metabarcoding for biomonitoring.


2021 ◽  
Vol 4 ◽  
Author(s):  
PJ Stephenson

Evidence-based decision-making in conservation and natural resource management is often constrained by lack of robust biodiversity data. Technology offers opportunities for enhanced data collection, with satellite-based remote sensing increasingly complemented by Earth-based sensors such as camera traps, acoustic recording devices and drones. In aquatic as well as terrestrial systems, environmental DNA is increasingly promoted as a tool to monitor species diversity and community composition. But if conservationists and natural resource managers are to know when to use eDNA, they need to understand its relative advantages and disadvantages, and when it can be used with or instead of other tools. In this paper, I expand on two recent publications (Stephenson 2020; Stephenson et al. 2020) to review lessons learned from the application of eDNA, especially metabarcoding, to the monitoring of aquatic biodiversity for conservation and to identify factors affecting its relevance and applicability. Over the past decade there have been many advances in technological solutions for biodiversity monitoring. eDNA and various remote sensing tools offer opportunities to create the enabling conditions for enhanced biodiversity monitoring, and are becoming cheaper and easier to use for scientists, public and private sector resource managers, and citizen scientists. Nonetheless, a number of challenges need to be addressed to, for example, improve the standardisation of tool use and to enhance capacity for the use, storage, sharing and analysis of huge volumes of data, especially in high-biodiversity countries. More studies comparing the relative efficiency and cost-effectiveness of different tools with different species in different habitats would help managers choose the right tools for their needs and capacity and better integrate them into monitoring schemes. eDNA is becoming the go-to option for the monitoring of aquatic species diversity and community composition and has also proven successful in some terrestrial settings. eDNA is especially useful for monitoring species that are in low densities or difficult to observe with traditional observer-based methods; indeed, several studies show eDNA metabarcoding techniques have a much better detection probability overall for taxa such as amphibians and fish. In some cases, eDNA has been shown to complement other tools when used together, by either increasing animal detection probabilities or increasing the number of indicators that can be measured at one site. This suggests that, in future, more effort should be made to test the effectiveness of integrating eDNA with one or more other tools to enhance the efficiency and effectiveness of measuring indicators and to increase the diversity of species detected. For example, eDNA could be combined with camera traps for monitoring vertebrates visiting waterholes. Testing multiple tools would also provide better opportunity to quantify when and how traditional observer-based methods can complement the technological solutions and when they are more cost-effective. However, it is noteworthy that, in general, the taxa for which data are most lacking, such as invertebrates, plants and fungi, are still those less easily monitored by eDNA and other new technologies. This suggests a focus only on technological solutions for biodiversity monitoring may perpetuate existing taxonomic data biases. I conclude by discussing the international policy context and the relevance of eDNA for monitoring global biodiversity indicators. Several opportunities exist to integrate eDNA into monitoring programmes to measure government, business and civil society contributions towards delivery of the post-2020 global biodiversity framework and the Sustainable Development Goals.


2020 ◽  
Vol 20 (6) ◽  
pp. 1542-1557
Author(s):  
Laura A. Hardulak ◽  
Jérôme Morinière ◽  
Axel Hausmann ◽  
Lars Hendrich ◽  
Stefan Schmidt ◽  
...  

1999 ◽  
Vol 39 (10-11) ◽  
pp. 207-210 ◽  
Author(s):  
D. J. Roux ◽  
C. J. Kleynhans ◽  
C. Thirion

The output of monitoring programmes such as the National Aquatic Ecosystem Biomonitoring Programme must be used in the management of aquatic ecosystems. To achieve this, collected data must, through a systematic framework, be linked to measurable management objectives. This paper demonstrates how the results obtained with biological indices and system-specific knowledge, are combined to derive semi-quantitative assessments of ecosystem condition. These assessments provide the basis for responding to the results of a river monitoring programme.


2016 ◽  
Vol 25 (4) ◽  
pp. 929-942 ◽  
Author(s):  
Alice Valentini ◽  
Pierre Taberlet ◽  
Claude Miaud ◽  
Raphaël Civade ◽  
Jelger Herder ◽  
...  

1986 ◽  
Vol 32 (3) ◽  
pp. 272-290 ◽  
Author(s):  
Robert A. Buchanan ◽  
Karen L. Whitlow ◽  
James Austin

This article summarizes the first national evaluation of objective prison classification systems. Conducted by Correctional Services Group, Inc., this study focused on the development and implementation activities of correctional agencies having objective systems and analyzed the effectiveness of three representative systems. Although a majority of agencies view objective systems as important management tools, the study found that inadequate planning and validation hindered many developmental efforts. An examination of three specific systems found that although individual classification scoring items evidenced only modest correlations with prison misconduct, the instruments as a whole demonstrated a capacity to classify according to risk. The article concludes with suggested guidelines for developing, implementing, and revising objective prison classification systems.


2015 ◽  
Vol 15 (4) ◽  
Author(s):  
Francisco Wagner Moreira ◽  
Emerson Silva Dias ◽  
Eneida Maria Eskinazi Sant'Anna

This study describes the occurrence of the phytophilous cladoceran Celsinotum candango, which has been considered, up to now, an endemic species of the Brazilian Cerrado, with only two previous records in the wetlands of Brasilia, Federal District. The cladoceran has now been registered at Coutos Lake (“Lagoa dos Coutos”), an altitudinal, temporary shallow lake, located in ironstone outcrops at Serra do Gandarela, Minas Gerais state. This mountain ridge was recently turned into an integral protection conservation unit, the Gandarela National Park. However, many shallow lakes, including this one, were excluded from the delimited area of the park, and are now at risk of disappearing due to expansion of mining activities. The information provided here reveals the importance of these shallow lakes to aquatic biodiversity, and reinforces the need for the inclusion of these rare aquatic ecosystems into the recently created Gandarela National Park.


2020 ◽  
Vol 20 (3) ◽  
pp. 732-745 ◽  
Author(s):  
Mieke Heyde ◽  
Michael Bunce ◽  
Grant Wardell‐Johnson ◽  
Kristen Fernandes ◽  
Nicole E. White ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document