scholarly journals Ocean Acidification and Mollusc Settlement in Posidonia oceanica Meadows: Does the Seagrass Buffer Lower pH Effects at CO2 Vents?

Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 311
Author(s):  
Alessandra Barruffo ◽  
Laura Ciaralli ◽  
Giandomenico Ardizzone ◽  
Maria Cristina Gambi ◽  
Edoardo Casoli

Ocean acidification has been broadly recognised to have effects on the structure and functioning of marine benthic communities. The selection of tolerant or vulnerable species can also occur during settlement phases, especially for calcifying organisms which are more vulnerable to low pH–high pCO2 conditions. Here, we use three natural CO2 vents (Castello Aragonese north and south sides, and Vullatura, Ischia, Italy) to assess the effect of a decrease of seawater pH on the settlement of Mollusca in Posidonia oceanica meadows, and to test the possible buffering effect provided by the seagrass. Artificial collectors were installed and collected after 33 days, during April–May 2019, in three different microhabitats within the meadow (canopy, bottom/rhizome level, and dead matte without plant cover), following a pH decreasing gradient from an extremely low pH zone (pH < 7.4), to ambient pH conditions (pH = 8.10). A total of 4659 specimens of Mollusca, belonging to 57 different taxa, were collected. The number of taxa was lower in low and extremely low pH conditions. Reduced mollusc assemblages were reported at the acidified stations, where few taxa accounted for a high number of individuals. Multivariate analyses revealed significant differences in mollusc assemblages among pH conditions, microhabitat, and the interaction of these two factors. Acanthocardia echinata, Alvania lineata, Alvania sp. juv, Eatonina fulgida, Hiatella arctica, Mytilys galloprovincialis, Musculus subpictus, Phorcus sp. juv, and Rissoa variabilis were the species mostly found in low and extremely low pH stations, and were all relatively robust to acidified conditions. Samples placed on the dead matte under acidified conditions at the Vullatura vent showed lower diversity and abundances if compared to canopy and bottom/rhizome samples, suggesting a possible buffering role of the Posidonia on mollusc settlement. Our study provides new evidence of shifts in marine benthic communities due to ocean acidification and evidence of how P. oceanica meadows could mitigate its effects on associated biota in light of future climate change.

2015 ◽  
Author(s):  
Maria Cristina Gambi ◽  
Emanuela Di Meglio ◽  
Luigia Donnarumma

Ocean acidification (OA) is today considered one of the most pervasive stressors for marine biota at the level of species, communities and ecosystems. Naturally acidified systems, such as the CO2 vents, represent suitable laboratories to study the effects of OA on benthic organisms. An analysis of the colonization pattern of epibionts settled on artificial leaves (mimics) of Posidonia oceanica in relation to ocean acidification at the shallow CO2 vents off the island of Ischia, is here presented. Mimics of Posidonia oceanica artificial leaves (dark green flexible PVC stripes 1 cm wide x 36 cm long) were placed from September 2009 to September 2010 along a gradient of OA of the Ischia vent’s system at six stations (3 on the south and 3 on the north side of the study area), located at extreme low pH (mean pH 7.5), low pH (7.8), and control, normal pH conditions (8.12). Six artificial leaves per station were collected every three months and analysed for taxa identification and estimates of coverage (algae and sessile clonal invertebrates) and number of individuals (not clonal taxa). Patterns of colonization in control stations showed a progressive increase in time in coverage values of many organisms, mainly calcifying forms as coralline algae, which represent the dominant taxon, spirorbids and bryozoans. Colonization of artificial leaves located in low pH stations followed a similar temporal pattern as control conditions, but with lower coverage and higher patchiness of calcareous forms at 12 months of colonization. Epibionts in extreme low pH conditions were dominated by filamentous green/brown algae, with the occurrence of a few coralline algae, spirorbids and bryozoans, especially in the early months of colonization (3 and 6 months). Colonization at 9 and 12 months showed the disappearance of even these rare calcareous organisms and occurrence only of filamentous turf and fleshy algae, with a very simplified epibiont assemblage, remaining at an early, young colonization stage. These results indicate a strong selection of calcareous forms and the lack of successional stages in extreme low pH conditions, while the few calcifiers settled at short exposure time (3-6 months) do not seem to survive at longer exposure to critical values of OA.


2015 ◽  
Author(s):  
Maria Cristina Gambi ◽  
Erica Keppel ◽  
Rosanna Guglielmo ◽  
Adriana Giangrande ◽  
Samantha L. Garrard

Polychaetes represent one of the most diversified and abundant taxa associated with seagrass meadows. These organisms show various feeding habits at different levels of the complex seagrass food web, representing suitable bioindicators of meadow structure and environmental status and disturbances. Ocean acidification (OA) is today considered one of the most pervasive stressors for marine biota at the level of species, communities and ecosystems. Naturally acidified systems, such as CO2 vents, represent suitable natural laboratories to study the effects of OA on benthic organisms. An analysis of polychaetes associated with Posidonia oceanica meadows located around shallow CO2 vents off the island of Ischia, is presented here. Polychaetes were collected in November 2011 with an air-lift sampler (40x40 cm; 4 replicates per station) along a gradient of OA at the Castello’s vent system at six stations (3 on the south and 3 on the north side), ranging from extreme low pH conditions (mean pH 7.5 occurring only on the south side) to control, normal pH conditions (8.12); a further control station was considered, 600 m from the Castello in similar environmental conditions and ambient pH (S. Anna meadow). A total of 99 taxa and about 4200 individual polychaetes were collected. Taxa richness showed higher values in the acidified stations, especially on the south side; similarly abundances were from two- to four-fold higher under low and extreme low pH conditions, in respect to control ones, due to relatively few dominant taxa. These are represented by Amphiglena mediterranea, Syllis gerlachi, S. prolifera, Exogone dispar, Sphaerosyllis pirifera, Polyophthalmus pictus and Kefersteinia cirrata. Multivariate analysis showed a separation between control and low pH assemblages and a separation between low pH and the extreme low pH site on the south side. Control stations showed higher variability among replicates, while acidified stations, especially those under extreme low pH conditions, showed a more homogeneous assemblage structure. These results demonstrate that many species of polychaetes are robust to OA, however, the high seagrass shoot density, occurring at acidified stations, may buffer the negative effect of this stressor on the biota, and explain both the high diversity and abundance observed there.


2015 ◽  
Author(s):  
Maria Cristina Gambi ◽  
Emanuela Di Meglio ◽  
Luigia Donnarumma

Ocean acidification (OA) is today considered one of the most pervasive stressors for marine biota at the level of species, communities and ecosystems. Naturally acidified systems, such as the CO2 vents, represent suitable laboratories to study the effects of OA on benthic organisms. An analysis of the colonization pattern of epibionts settled on artificial leaves (mimics) of Posidonia oceanica in relation to ocean acidification at the shallow CO2 vents off the island of Ischia, is here presented. Mimics of Posidonia oceanica artificial leaves (dark green flexible PVC stripes 1 cm wide x 36 cm long) were placed from September 2009 to September 2010 along a gradient of OA of the Ischia vent’s system at six stations (3 on the south and 3 on the north side of the study area), located at extreme low pH (mean pH 7.5), low pH (7.8), and control, normal pH conditions (8.12). Six artificial leaves per station were collected every three months and analysed for taxa identification and estimates of coverage (algae and sessile clonal invertebrates) and number of individuals (not clonal taxa). Patterns of colonization in control stations showed a progressive increase in time in coverage values of many organisms, mainly calcifying forms as coralline algae, which represent the dominant taxon, spirorbids and bryozoans. Colonization of artificial leaves located in low pH stations followed a similar temporal pattern as control conditions, but with lower coverage and higher patchiness of calcareous forms at 12 months of colonization. Epibionts in extreme low pH conditions were dominated by filamentous green/brown algae, with the occurrence of a few coralline algae, spirorbids and bryozoans, especially in the early months of colonization (3 and 6 months). Colonization at 9 and 12 months showed the disappearance of even these rare calcareous organisms and occurrence only of filamentous turf and fleshy algae, with a very simplified epibiont assemblage, remaining at an early, young colonization stage. These results indicate a strong selection of calcareous forms and the lack of successional stages in extreme low pH conditions, while the few calcifiers settled at short exposure time (3-6 months) do not seem to survive at longer exposure to critical values of OA.


Author(s):  
Bárbara G. Jacob ◽  
Peter von Dassow ◽  
Joe E. Salisbury ◽  
Jorge M. Navarro ◽  
Cristian A. Vargas

pCO2/pH perturbation experiments were carried out under two different pCO2 levels to evaluate effects of CO2-driven ocean acidification on semi-continuous cultures of the marine diatom Skeletonema pseudocostatum CSA48. Under higher pCO2/lowered pH conditions, our results showed that CO2-driven acidification had no significant impact on growth rate, chlorophyll-a, cellular abundance, gross photosynthesis, dark respiration, particulate organic carbon and particulate organic nitrogen between CO2-treatments, suggesting that S. pseudocostatum is adapted to tolerate changes of ~0.5 units of pH under high pCO2 conditions. However, dissolved organic carbon (DOC) concentration and DOC/POC ratio were significantly higher at high pCO2, indicating that a greater partitioning of organic carbon into the DOC pool was stimulated by high CO2/low pH conditions. Total fatty acids (FAs) were significantly higher under low pCO2 conditions. The composition of FAs changed from low to high pCO2, with an increase in the concentration of saturated and a reduction of monounsaturated FAs. Polyunsaturated FAs did not show significant differences between pCO2 treatments. Our results lead to the conclusion that the balance between negative or null effect on S. pseudocostatum ecophysiology upon low pH/high pCO2 conditions constitute an important factor to be considered in order to evaluate the global effect of rising atmospheric CO2 on primary productivity in coastal ocean. We found a significant decrease in total FAs, however no indications were found for a detrimental effect of ocean acidification on the nutritional quality in terms of essential fatty acids.


2014 ◽  
Vol 15 (3) ◽  
pp. 498 ◽  
Author(s):  
L. DONNARUMMA ◽  
C. LOMBARDI ◽  
S. COCITO ◽  
M.C. GAMBI

Effects of ocean acidification (OA on the colonization/settlement pattern of the epibiont community of the leaves and rhizomesof the Mediterranean seagrass,Posidoniaoceanica, have been studied at volcanic CO2vents off Ischia (Italy), using “mimics”as artificial substrates. The experiments were conducted in shallowPosidoniastands (2-3 m depth), in three stations on the northand three on the south sides of the study area, distributed along a pH gradient. At each station, 4 rhizome mimics and 6 artificialleaves were collected every three months (Sept 2009-Sept 2010). The epibionts on both leaf and rhizome mimics showed clearchanges along the pH gradient; coralline algae and calcareous invertebrates (bryozoans, serpulid polychaetes and barnacles) weredominant at control stations but progressively disappeared at the most acidified stations. In these extremely low pH sites theassemblage was dominated by filamentous algae and non calcareous taxa such as hydroids and tunicates. Settlement pattern onthe artificial leaves and rhizome mimics over time showed a consistent distribution pattern along the pH gradient and highlightedthe peak of recruitment of the various organisms in different periods according to their life history.Posidoniamimics at theacidified station showed a poor and very simplified assemblage where calcifying epibionts seemed less competitive for space. Thisprofound difference in epiphyte communities in low pH conditions suggests cascading effects on the food web of the meadow and,consequently, on the functioning of the system


2015 ◽  
Author(s):  
Maria Cristina Gambi ◽  
Erica Keppel ◽  
Rosanna Guglielmo ◽  
Adriana Giangrande ◽  
Samantha L. Garrard

Polychaetes represent one of the most diversified and abundant taxa associated with seagrass meadows. These organisms show various feeding habits at different levels of the complex seagrass food web, representing suitable bioindicators of meadow structure and environmental status and disturbances. Ocean acidification (OA) is today considered one of the most pervasive stressors for marine biota at the level of species, communities and ecosystems. Naturally acidified systems, such as CO2 vents, represent suitable natural laboratories to study the effects of OA on benthic organisms. An analysis of polychaetes associated with Posidonia oceanica meadows located around shallow CO2 vents off the island of Ischia, is presented here. Polychaetes were collected in November 2011 with an air-lift sampler (40x40 cm; 4 replicates per station) along a gradient of OA at the Castello’s vent system at six stations (3 on the south and 3 on the north side), ranging from extreme low pH conditions (mean pH 7.5 occurring only on the south side) to control, normal pH conditions (8.12); a further control station was considered, 600 m from the Castello in similar environmental conditions and ambient pH (S. Anna meadow). A total of 99 taxa and about 4200 individual polychaetes were collected. Taxa richness showed higher values in the acidified stations, especially on the south side; similarly abundances were from two- to four-fold higher under low and extreme low pH conditions, in respect to control ones, due to relatively few dominant taxa. These are represented by Amphiglena mediterranea, Syllis gerlachi, S. prolifera, Exogone dispar, Sphaerosyllis pirifera, Polyophthalmus pictus and Kefersteinia cirrata. Multivariate analysis showed a separation between control and low pH assemblages and a separation between low pH and the extreme low pH site on the south side. Control stations showed higher variability among replicates, while acidified stations, especially those under extreme low pH conditions, showed a more homogeneous assemblage structure. These results demonstrate that many species of polychaetes are robust to OA, however, the high seagrass shoot density, occurring at acidified stations, may buffer the negative effect of this stressor on the biota, and explain both the high diversity and abundance observed there.


2019 ◽  
Author(s):  
Emma Timmins-Schiffman ◽  
José M. Guzmán ◽  
Rhonda Elliott ◽  
Brent Vadopalas ◽  
Steven B. Roberts

AbstractPacific geoduck clams (Panopea generosa) are found along the Northeast Pacific coast where they are significant components of coastal and estuarine ecosystems and the basis of a growing and highly profitable aquaculture industry. The Pacific coastline, however, is also the sight of rapidly changing ocean habitat, including significant reductions in pH. The impacts of ocean acidification on invertebrate bivalve larvae have been widely documented and it is well established that many species experience growth and developmental deficiencies when exposed to low pH. As a native of environments that have historically lower pH than the open ocean, it is possible that geoduck larvae are less impacted by these effects than other species. Over two weeks in larval development (days 6-19 post-fertilization) geoduck larvae were reared at pH 7.5 or 7.1 in a commercial shellfish hatchery. Larvae were sampled at six time points throughout the period for a in-depth proteomics analysis of developmental molecular physiology. Larvae reared at low pH were smaller than those reared at ambient pH, especially in the prodissoconch II phase of development. Competency for settlement was also delayed in larvae from the low pH conditions. A comparison of proteomic profiles over the course of development reveal that these differing phenotypic outcomes are likely due to environmental disruptions to the timing of molecular physiological events as suites of proteins showed differing profiles of abundance between the two pH environments. Ocean acidification likely caused an energetic stress on the larvae at pH 7.1, causing a shift in physiological prioritization with resulting loss of fitness.


2018 ◽  
Author(s):  
Facheng Ye ◽  
Hana Jurikova ◽  
Lucia Angiolini ◽  
Uwe Brand ◽  
Gaia Crippa ◽  
...  

Abstract. Throughout the last few decades and in the near future CO2–induced ocean acidification is potentially a big threat to marine calcite-shelled animals (e.g., brachiopods, bivalves, corals and gastropods). Despite the great number of studies focusing on the effects of acidification on shell growth, metabolism, shell dissolution and shell repair, the consequences on biomineral formation remain poorly understood, and only few studies addressed contemporarily the impact of acidification on shell microstructure and geochemistry. In this study, a detailed microstructure and stable isotope geochemistry investigation was performed on nine adult brachiopod specimens of Magellania venosa (Dixon, 1789), grown in the natural environment as well as in controlled culturing experiments at different pH conditions (ranging 7.35 to 8.15 ± 0.05) over different time intervals (214 to 335 days). Details of shell microstructural features, such as thickness of the primary layer, density and size of endopunctae and morphology of the basic structural unit of the secondary layer were analysed using scanning electron microscopy (SEM). Stable isotope compositions (δ13C and δ18O) were tested from the secondary shell layer along shell ontogenetic increments in both dorsal and ventral valves. Based on our comprehensive dataset, we observed that, under low pH conditions, M. venosa produced a more organic-rich shell with higher density of and larger endopunctae, and smaller secondary layer fibres, when subjected to about one year of culturing. Also, increasingly negative δ13C and δ18O values are recorded by the shell produced during culturing and are related to the CO2–source in the culture setup. Both the microstructural changes and the stable isotope results are similar to observations on brachiopods from the fossil record and strongly support the value of brachiopods as robust archives of proxies for studying ocean acidification events in the geologic past.


2015 ◽  
Vol 12 (2) ◽  
pp. 365-372 ◽  
Author(s):  
S. Comeau ◽  
R. C. Carpenter ◽  
C. A. Lantz ◽  
P. J. Edmunds

Abstract. Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (~ 400 μatm) and high pCO2 (~ 1300 μatm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was reduced by 59% under high pCO2, with sediment dissolution explaining ~ 50% of this decrease; net calcification of corals and calcified algae remained positive but was reduced by 29% under elevated pCO2. These results show that, despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might transition to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.


2018 ◽  
Author(s):  
OCTO

Shellfish harvesting accounts for over ⅓ of total fisheries landings by value in the United Kingdom. Contributing over £400 million each year, shellfish aquaculture and the wild-capture shellfish, mollusk, and crustacean fisheries are important economic drivers in the UK. Ocean acidification could affect some of these species, affecting their survival as some of their shells could be affected by low pH conditions. To understand the monetary effects of ocean acidification, the authors calculated the costs of lost shellfish harvesting on the UK economy.


Sign in / Sign up

Export Citation Format

Share Document