scholarly journals Genetic Diversity and Population Structure of Wild Beets (Beta spp.) from the Western Iberian Peninsula and the Azores and Madeira Islands

Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 593
Author(s):  
Maria Manuela Veloso ◽  
Maria Cristina Simões-Costa ◽  
Joana Bagoin Guimarães ◽  
Carla Marques Ribeiro ◽  
Isabel Evaristo ◽  
...  

In this work, using simple sequence repeat (SSR) markers, we present new insights into the genetic diversity, differentiation, and structure of Beta vulgaris subsp. maritima of western Iberia and the Azores and Madeira islands and of B. macrocarpa from southern Portugal. B. macrocarpa occurs only in southern Portugal and frequently in sympatry with B. vulgaris subsp. maritima, showing genetic introgression. B. macrocarpa has a better-defined structure than B. vulgaris subsp. maritima, which has a high degree of admixture. A great differentiation (FST ranging from 0.277 to 0.184) was observed among the northern populations of B. vulgaris subsp. maritima. In contrast, only a small differentiation (FST ranging from 0.000 to 0.026) was detected among the southern B. vulgaris subsp. maritima populations. The inland B. vulgaris subsp. maritima populations (“RIO” and “VMT”) are distinct from each other, which also occurs with the two islands’ populations (“MAD” and “AZO”). The existence of two distinct Atlantic Sea currents can explain the fact that Madeira is related to the southern populations, while the Azores is related to the northern populations. We consider that understanding the relationships existing within Beta spp. is key to future genetic studies and for the establishment of conservation measures. Our results show that the southern coastal areas of Portugal should be considered as a potential site for in situ conservation of the beet wild relatives. Special attention is needed in what concerns B. macrocarpa because this is a rare species that also occurs in a sympatric relationship with B. vulgaris subsp. maritima.

Botany ◽  
2013 ◽  
Vol 91 (10) ◽  
pp. 653-661 ◽  
Author(s):  
Anochar Kaewwongwal ◽  
Arunee Jetsadu ◽  
Prakit Somta ◽  
Sompong Chankaew ◽  
Peerasak Srinives

The objective of this research was to determine the genetic diversity and population structure of natural populations of two rare wild species of Asian Vigna (Phaseoleae, Fabaceae), Vigna exilis Tateishi & Maxted and Vigna grandiflora (Prain) Tateishi & Maxted, from Thailand. Employing 21 simple sequence repeat markers, 107 and 85 individuals from seven and five natural populations of V. exilis and V. grandiflora, respectively, were analyzed. In total, the markers detected 196 alleles for V. exilis and 219 alleles for V. grandiflora. Vigna exilis populations showed lower average values in number of alleles, allelic richness, observed heterozygosity, gene diversity, and outcrossing rate than V. grandiflora populations, namely 58.00% versus 114.60%, 51.96% versus 74.80%, 0.02% versus 0.18%, 0.40% versus 0.66%, and 3.24% versus 17.41%, respectively. Pairwise FST among populations demonstrated that V. exilis was much more differentiated than V. grandiflora. Analysis of molecular variance revealed that 41.83% and 15.06% of total variation resided among the populations of V. exilis and V. grandiflora, respectively. Seven and two genetic clusters were detected for V. grandiflora and V. exilis by STRUCTURE analysis. Our findings suggest that different strategies are required for in situ conservation of the two species. All V. exilis populations, or as many as possible, should be conserved to protect genetic resources of this species, while a few V. grandiflora populations can capture the majority of its genetic variation.


2020 ◽  
Vol 180 (4) ◽  
pp. 32-43 ◽  
Author(s):  
L. Yu. Shipilina

Background. Preservation of the entire genetic diversity of the world’s flora is indispensable to the deployment of breeding practice aimed at development and improvement of the existing economically useful plant species and varieties. The in situ conservation approach is recognized as the topmost priority. Therefore, a study of crop wild relatives (CWR) in Kaliningrad Province appears vital to identify the most vulnerable species and enhance their in situ conservation.Materials and methods. Crop wild relatives occurring in Kaliningrad Province were the research target. The WIR and LE herbarium collections, published data, and results of VIR’s plant explorations undertaken in 1974 and 1983 served as the material for the research. Plant species included in the Red Data Books of Kaliningrad Province, Lithuania, Estonia, Poland, etc. were analyzed, and the data from open databases (GBIF, CWR, ILDIS, etc.) and AgroAtlas maps were employed. CWR requiring special conservation measures were identified.Results and conclusions. Kaliningrad Province, Russia, is home to 324 species of CWR. Natural habitats of the 6 most vulnerable plant species were mapped: Vicia dumetorum L., Trifolium rubens L., Chrisaspis spadiceum L., Elytrigia juncea (L.) Nevski, Phleum phleoides (L.) H. Karst., and Allium vineale L. These species fall under the 1st vulnerability category.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 638
Author(s):  
Marcelo B. Medeiros ◽  
José F. M. Valls ◽  
Aluana G. Abreu ◽  
Gustavo Heiden ◽  
Suelma Ribeiro-Silva ◽  
...  

This study presents the status of ex situ and in situ conservation for the crop wild relatives of rice, potato, sweet potato, and finger millet in Brazil, and the subsequent germplasm collection expeditions. This research is part of a global initiative entitled “Adapting Agriculture to Climate Change: Collecting, Protecting, and Preparing Crop Wild Relatives” supported by the Global Crop Diversity Trust. Species of the primary, secondary, and tertiary gene pools with occurrences reported in Brazil were included: Oryza alta Swallen, O. grandiglumis (Döll) Prod., O. latifolia Desv., O. glumaepatula Steud., Eleusine tristachya (Lam.) Lam., E. indica (L.) Gaertn., Solanum commersonii Dunal, S. chacoense Bitter, Ipomoea grandifolia (Dammer) O’Donell, I. ramosissima (Poir.) Choisy, I. tiliacea (Willd.) Choisy, I. triloba L., and I. cynanchifolia Meisn. The status of the ex situ and in situ conservation of each taxon was assessed using the gap analysis methodology, and the results were used to plan 16 germplasm collection expeditions. Seeds of the collected material were evaluated for viability, and the protocols for seed germination and cryopreservation were tested. The final conservation score, resulting from the gap analysis and including the average of the ex situ and in situ scores, resulted in a classification of medium priority of conservation for all the species, with the exception of I. grandifolia (high priority). The total accessions collected (174) almost doubled the total accessions of these crop wild relatives incorporated in Embrapa’s ex situ conservation system prior to 2015. In addition, accessions for practically absent species were collected for the ex situ conservation system, such as Ipomoea species, Eleusine indica, and Solanum chacoense. The methods used for dormancy breaking and low temperature conservation for the Oryza, Eleusine, and Ipomoea species were promising for the incorporation of accessions in the respective gene banks. The results show the importance of efforts to collect and conserve ex situ crop wild relatives in Brazil based on previous gap analysis. The complementarity with the in situ strategy also appears to be very promising in the country.


Author(s):  
Wiguna Rahman ◽  
Joana Magos Brehm ◽  
Nigel Maxted ◽  
Jade Phillips ◽  
Aremi R. Contreras-Toledo ◽  
...  

AbstractConservation programmes are always limited by available resources. Careful planning is therefore required to increase the efficiency of conservation and gap analysis can be used for this purpose. This method was used to assess the representativeness of current ex situ and in situ conservation actions of 234 priority crop wild relatives (CWR) in Indonesia. This analysis also included species distribution modelling, the creation of an ecogeographical land characterization map, and a complementarity analysis to identify priorities area for in situ conservation and for further collecting of ex situ conservation programmes. The results show that both current ex situ and in situ conservation actions are insufficient. Sixty-six percent of priority CWRs have no recorded ex situ collections. Eighty CWRs with ex situ collections are still under-represented in the national genebanks and 65 CWRs have no presence records within the existing protected area network although 60 are predicted to exist in several protected areas according to their potential distribution models. The complementarity analysis shows that a minimum of 61 complementary grid areas (complementary based on grid cells) are required to conserve all priority taxa and 40 complementary protected areas (complementary based on existing protected areas) are required to conserve those with known populations within the existing in situ protected area network. The top ten of complementary protected areas are proposed as the initial areas for the development of CWR genetic reserves network in Indonesia. It is recommended to enhanced coordination between ex situ and in situ conservation stakeholders for sustaining the long term conservation of CWR in Indonesia. Implementation of the research recommendations will provide for the first time an effective conservation planning of Indonesia’s CWR diversity and will significantly enhance the country’s food and nutritional security.


Sign in / Sign up

Export Citation Format

Share Document