scholarly journals Analysis of Oil-Injected Twin-Screw Compressor with Multiphase Flow Models

Designs ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 54 ◽  
Author(s):  
Nausheen Basha ◽  
Ahmed Kovacevic ◽  
Sham Rane

Growing demands for energy are motivating researchers to conduct in-depth analysis of positive displacement machines such as oil-injected screw compressors which are frequently used in industrial applications like refrigeration, oil and gas and air compression. The performance of these machines is strongly dependent on the oil injection. Optimisation of oil has a great energy saving potential by both increasing efficiency and reducing other impacts on the environment. Therefore, a three-dimensional, transient computational fluid dynamics study of oil injection in a twin-screw compressor is conducted in this research. This study explores pseudo single-fluid multiphase (SFM) models of VOF (Volume of Fluid) and a mixture for their capability to predict the performance of the oil-injected twin screw compressor and compare this with the experimental values. SCORGTM (Screw Compressor Rotor Grid Generator) is used to generate numerical grids for unstructured solver Fluent with the special interface developed to facilitate user defined nodal displacement (UDND). The performance predictions with both VOF and mixture models provide accurate values for power consumption and flow rates with low deviation between computational fluid dynamics (CFD) and the experiment at 6000 RPM and 7.0 bar discharge pressure. In addition, the study reflects on differences in predicting oil distribution with VOF, mixture and Eulerian-Eulerian two-fluid models. Overall, this study provides an insight into multiphase flow-modelling techniques available for oil-injected twin-screw compressors comprehensively accounting for the details of oil distribution in the compression chamber and integral compressor performance.

Author(s):  
Di Yan ◽  
Qian Tang ◽  
Ahmed Kovacevic ◽  
Sham Rane ◽  
Linqing Pei

Increasing demands for high-performance handling of fluids in oil and gas as well as other applications require improvements of efficiency and reliability of screw pumps. Rotor profile plays the key role in the performance of such machines. This paper analyses difference in performance of 2–3 lobe combination of twin-screw pumps with different rotor profiles. A-type profile formed of involute–cycloid curves and D-type formed of cycloid curves are typical representatives for 2–3 type screw pumps. The investigation is performed by use of a full 3-D computational fluid dynamics analysis based on a single-domain structured moving mesh obtained by novel grid generation procedure. The real-time mass flow rate, rotor torque, pressure distribution and velocity field were obtained from 3D computational fluid dynamics calculations. The performance curves were produced for variable rotation speeds and variable discharge pressures. The computational fluid dynamics model was validated by comparing the simulation results of the A-type pump with the experimental data. In order to get the performance characteristics of D-type profile, two rotors with D-type profile were designed. The first has the same displacement volume as A-type while the second has the same lead and rotor length as A-type but different displacement volume. The comparison of results obtained with two rotor profiles gave an insight on the advantages and disadvantages of each of them.


2021 ◽  
Author(s):  
◽  
Ashutosh Bhokare

Multiphase flows are witnessed often in nature and the industry. Simulating the behaviour of multiphase flows is of importance to scientists and engineers for better prediction of phenomena and design of products. This thesis aims to develop a multiphase flow framework which can be applied to industrial applications such as placement of concrete in construction and proppant transport in oil and gas. Techniques available in literature to model multiphase flows are systematically introduced and each of their merits and demerits are analysed. Their suitability for different applications and scenarios are established. The challenges surrounding the placement of fresh concrete in formwork is investigated. Construction defects, the physics behind these defects and existing tests used to monitor fresh concrete quality are evaluated. Methods used to simulate fresh concrete flow as an alternative to experiments are critically analysed. The potential benefits of using numerical modelling and the shortcoming of the existing approaches are established. It is found that the homogeneous Bingham model is currently the most widely used technique to model fresh concrete flow. Determining the Bingham parameters for a given concrete mix remains a challenge and a novel method to obtain values for them is demonstrated in this work. The Bingham model is also applied to a full-scale tremie concrete placement procedure in a pile. Knowledge on the flow pattern followed by concrete being placed using a tremie is extracted. This is used to answer questions which the industry currently demands. The need for a more sophisticated model is emphasised in order to obtain an even greater understanding of fresh concrete flow behaviour. A CFD-DEM framework in which the multiphase nature of concrete is captured is developed. To validate this framework a new benchmark test is proposed in conjunction with the fluidised bed experiment. A comparative study of the drag models used in CFD-DEM approaches is performed to systematically assess each of their performances. CFD-DEM modelling is then applied to model fresh concrete flow and its potential to model defect causing phenomena is demonstrated. A model to capture more complex behaviours of concrete such as thixotropy is introduced and demonstrated.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093709
Author(s):  
Jiann Lin Chen ◽  
Chieh Ju Tsai ◽  
Hsiang-Chen Hsu

Simulated moving bed chromatography process, which is a multicolumn chromatography process, has been used in various industrial applications. Dynamic axial compression columns are key elements in simulated moving beds, and their flow characteristics are worth exploring using state-of-the-art numerical methodologies. In this study, new fluid distributors for the dynamic axial compression column were designed and fabricated based on mass conservation in fluid mechanics and the computer-aided design in the preliminary stage. Computational fluid dynamics was employed to resolve the flow field, and the numerical chromatograms were validated by laboratory experiments. For the computational fluid dynamics–based simulation of flow in the dynamic axial compression, the transient laminar flow fields were described by the momentum and species transport equations with Darcy’s law to model the porous zone in the packed bed. In addition, reverse engineering processes were applied to obtain the unknown physical parameters, such as viscous resistance and adsorption equilibrium coefficients. Moreover, including the adsorption equilibrium equation in the fundamental governing equations made the simulated results agree with the experimental data in chromatograms, providing a more feasible result for practical applications.


2017 ◽  
Vol 9 (1) ◽  
pp. 3-25 ◽  
Author(s):  
Jean-Paul Kone ◽  
Xinyu Zhang ◽  
Yuying Yan ◽  
Guilin Hu ◽  
Goodarz Ahmadi

A review of published three-dimensional, computational fluid dynamics models for proton exchange membrane fuel cells that accounts for multiphase flow is presented. The models can be categorized as models for transport phenomena, geometry or operating condition effects, and thermal effects. The influences of heat and water management on the fuel cell performance have been repeatedly addressed, and these still remain two central issues in proton exchange membrane fuel cell technology. The strengths and weaknesses of the models, the modelling assumptions, and the model validation are discussed. The salient numerical features of the models are examined, and an overview of the most commonly used computational fluid dynamic codes for the numerical modelling of proton exchange membrane fuel cells is given. Comprehensive three-dimensional multiphase flow computational fluid dynamic models accounting for the major transport phenomena inside a complete cell have been developed. However, it has been noted that more research is required to develop models that include among other things, the detailed composition and structure of the catalyst layers, the effects of water droplets movement in the gas flow channels, the consideration of phase change in both the anode and the cathode sides of the fuel cell, and dissolved water transport.


2020 ◽  
Vol 10 (03) ◽  
pp. 184-197
Author(s):  
Amod Kumar ◽  
Claudio Olmi ◽  
Oluwatosin Ogundare ◽  
Pranab Jha ◽  
David Bennett

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Miguel Ballesteros ◽  
Nicolás Ratkovich ◽  
Eduardo Pereyra

Abstract Low liquid loading flow occurs very commonly in the transport of any kind of wet gas, such as in the oil and gas, the food, and the pharmaceutical industries. However, most studies that analyze this type of flow do not cover actual industry fluids and operating conditions. This study focused then on modeling this type of flow in medium-sized (6-in [DN 150] and 10-in [DN 250]) pipes, using computational fluid dynamics (CFD) simulations. When comparing with experimental data from the University of Tulsa, the differences observed between experimental and CFD data for the liquid holdup and the pressure drop seemed to fall within acceptable error, around 20%. Additionally, different pipe sections from a Colombian gas pipeline were simulated with a natural gas-condensate mixture to analyze the effect of pipe inclination and operation variables on liquid holdup, in real industry conditions. It was noticed that downward pipe inclinations favored smooth stratified flow and decreased liquid holdup in an almost linear fashion, while upward inclinations generated unsteady wavy flows, or even a possible annular flow, and increased liquid holdup and liquid entrainment into the gas phase.


Author(s):  
Jason Smith ◽  
Robert N. Eli

This paper reports on a laboratory experiment conducted more than 30 years ago (Eli, 1974, unpublished), and recent Computational Fluid Dynamics (CFD) investigations, focusing on the properties of a plane tangential jet produced by an apparatus called a “centrifugal nozzle.” The authors believe that the centrifugal nozzle has potential industrial applications in several areas related to fluid mixing and particulate matter suspension in mixing tanks. It is also believed that this experiment, or one similar, may provide data useful for benchmarking CFD models.


Sign in / Sign up

Export Citation Format

Share Document