scholarly journals Recent Progress and Perspectives on Non-Invasive Glucose Sensors

Diabetology ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 56-71
Author(s):  
Nicholas B. Davison ◽  
Christopher J. Gaffney ◽  
Jemma G. Kerns ◽  
Qiandong D. Zhuang

Self-monitoring of blood glucose forms an important part of the management of diabetes and the prevention of hyperglycaemia and hypoglycaemia. Current glucose monitoring methods either use needle-prick enzymatic glucose-meters or subcutaneous continuous glucose sensors (CGM) and thus, non-invasive glucose measurements could greatly improve the self-management of diabetes. A wide range of non-invasive sensing techniques have been reported, though achieving a level of precision comparable to invasive meters remains a challenge. Optical sensors, which utilise the interactions between glucose and light, offer the potential for non-invasive continuous sensing, allowing real-time monitoring of glucose levels, and a range of different optical sensing technologies have been proposed. These are primarily based upon optical absorption and scattering effects and include infrared spectroscopy, Raman spectroscopy and optical coherence tomography (OCT), with other optical techniques such as photoacoustic spectroscopy (PAS) and polarimetry also reported. This review aims to discuss the current progress behind the most reported optical glucose sensing methods, theory and current limitations of optical sensing methods and the future technology development required to achieve an accurate optical-based glucose monitoring device.

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6820
Author(s):  
Bushra Alsunaidi ◽  
Murad Althobaiti ◽  
Mahbubunnabi Tamal ◽  
Waleed Albaker ◽  
Ibraheem Al-Naib

The prevalence of diabetes is increasing globally. More than 690 million cases of diabetes are expected worldwide by 2045. Continuous blood glucose monitoring is essential to control the disease and avoid long-term complications. Diabetics suffer on a daily basis with the traditional glucose monitors currently in use, which are invasive, painful, and cost-intensive. Therefore, the demand for non-invasive, painless, economical, and reliable approaches to monitor glucose levels is increasing. Since the last decades, many glucose sensing technologies have been developed. Researchers and scientists have been working on the enhancement of these technologies to achieve better results. This paper provides an updated review of some of the pioneering non-invasive optical techniques for monitoring blood glucose levels that have been proposed in the last six years, including a summary of state-of-the-art error analysis and validation techniques.


2012 ◽  
Vol 529 ◽  
pp. 361-365 ◽  
Author(s):  
Yang Yang Liu ◽  
Hong Wang ◽  
Jian Guo Cui ◽  
Ji Yu Wu ◽  
Xiao Jing Yao

To research the glucose levels with diabetes to reduce complications, a method which is about the noninvasive glucose monitoring based on the reverse iontophoresis has been introduced. This paper summarizes the theory of reverse iontophoresis as well as the method of tissue fluid’s extraction, and reviewed the research progress on non-invasive glucose monitoring based on the principle of the reverse iontophoresis,and investigated glucose sensors for low level glucose monitoring, pointed out the other elements detection based on the iontophoresis method in tissue fluid. The technology based on reverse iontophoresis could be the most possible method to detect glucose noninvasively, moreover the precision and accuracy of the GlucoWatch could be improved in the future.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4672
Author(s):  
Mohamed H. Hassan ◽  
Cian Vyas ◽  
Bruce Grieve ◽  
Paulo Bartolo

The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor.


2020 ◽  
pp. 088532822097557
Author(s):  
Prem Pandey ◽  
Govind Pandey ◽  
Roger Narayan

We report on polyethylenimine (PEI)-mediated synthesis of Prussian blue nanoparticles (PBNPs) and gold nanoparticles (AuNPs); the formation of PBNP-AuNP nanohybrids with a remarkable change in Prussian blue character as a function of gold cation concentration was also considered. It was shown that PEI-protected polycrystalline PBNPs can be synthesized in an acidic medium from the precursor potassium ferricyanide [K3Fe(CN)6] at 60 °C. Since PEI also enables the controlled formation of gold nanoparticles (AuNPs) in the presence of formaldehyde under ambient conditions, nanohybrids of PBNPs and AuNPs were prepared. The formation of AuNPs was recorded over a wide range of PEI concentrations, which allowed control over polymeric cation capping of the AuNPs. PEI concentration-dependent enhancement/quenching of fluorescence/resonance Rayleigh scattering was useful for non-enzymatic detection of serum glucose levels. The resonance Rayleigh scattering intensity of PBNPs was several-fold higher than that of AuNPs and acted as a potent quencher of fluorescence. At an optimal concentration of PEI, AuNPs allowed an increase in the fluorescence signal as function of glucose concentration; the quenching ability of PB was demonstrated to be a function of the glucose concentration. This method is efficient for fast glucose sensing and offers a wider linear dynamic range, 0–10 mM, which is useful for non-enzymatic detection of serum glucose levels.


2003 ◽  
Vol 13 (5) ◽  
pp. 371-374 ◽  
Author(s):  
Ramachandram Badugu ◽  
Joseph R. Lakowicz ◽  
Chris D. Geddes

2016 ◽  
Vol 19 (5) ◽  
pp. 397-405 ◽  
Author(s):  
Alina Yur'evna Babenko ◽  
Yulia Alexeevna Kononova ◽  
Alexandr Ivanovich Tsiberkin ◽  
Michail Konstantinovich Khodzitsky ◽  
Elena Nilkolaevna Grineva

Improved prognoses of patients with type 2 diabetes are primarily determined by the extent of blood glucose control (correction of both hyper- and hypoglycemia and normalization of blood glucose levels). The proper identification and timely correction of abnormal blood glucose levels require frequent blood glucose monitoring by the patient. Currently used methods for the self-monitoring of blood glucose have significant drawbacks that limit their use. The most significant problems with these methods include insufficient accuracy, invasiveness and high cost, leading to noncompliance and difficult assessment of disease status. Such factors underscore the need for a noninvasive, cost-effective and highly accurate method to measure blood glucose levels. There are several different approaches for the noninvasive measurement of blood glucose levels, including optical analysis, ultrasound and bioimpedance. The concept of a noninvasive glucometer was launched more than 30 years ago. Nevertheless, most noninvasive technologies are still in early stages of development and are not used in clinical practice. This review describers the most promising developments in this area.


2019 ◽  
Vol 8 (4) ◽  
pp. 6437-6441

Diabetes has shown to be a chronic disease world over, mainly caused due to reduced physical activity and increased obesity. World health organization statistics show diabetes as a leading cause of disability universally. To avoid extreme medical conditions of subjects, regular monitoring of their glucose levels has been suggested. The most common method that has been in use is the pinprick method for glucose monitoring which carries the risk of contamination as well as irritation. One possible approach called noninvasive technique can be adopted to avoid this major concern. This paper presents designing Inter-Digital-Sensor (IDS) for non-invasive sensing of the glucose level. The sensor-based chip once mounted onto the upper arm or pinkie finger of diabetes subject, is able to sense different glucose levels concentration as impedance plots. A set of several simulation results has been obtained using COMSOL for getting optimized dimensions of the sensor digits. This research has presented the generation of an electric field and intensity by using electrode of known length with element spacing varying from 250µm to 600µm developed over 15mm x 20mm sensor area. An ID of 475µm width spacing with ten (10) digits producing 2.33 pF of capacitance value with impedance resonating at 13 GHz of frequency is reported in this paper


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6925
Author(s):  
Liu Tang ◽  
Shwu Jen Chang ◽  
Ching-Jung Chen ◽  
Jen-Tsai Liu

In recent years, with the rise of global diabetes, a growing number of subjects are suffering from pain and infections caused by the invasive nature of mainstream commercial glucose meters. Non-invasive blood glucose monitoring technology has become an international research topic and a new method which could bring relief to a vast number of patients. This paper reviews the research progress and major challenges of non-invasive blood glucose detection technology in recent years, and divides it into three categories: optics, microwave and electrochemistry, based on the detection principle. The technology covers medical, materials, optics, electromagnetic wave, chemistry, biology, computational science and other related fields. The advantages and limitations of non-invasive and invasive technologies as well as electrochemistry and optics in non-invasives are compared horizontally in this paper. In addition, the current research achievements and limitations of non-invasive electrochemical glucose sensing systems in continuous monitoring, point-of-care and clinical settings are highlighted, so as to discuss the development tendency in future research. With the rapid development of wearable technology and transdermal biosensors, non-invasive blood glucose monitoring will become more efficient, affordable, robust, and more competitive on the market.


Author(s):  
Sharath P. Sasi

Diabetes is the seventh leading cause of deaths in the US with almost 439 million people worldwide expected to be diabetic by 2030. The need for continuous, non-invasive monitoring is a top priority. Earlier devices that utilized electroenzymatic sensing technique were minimally invasive and had major pitfalls. Advancements in various non-invasive, especially fluorescence-based, sensing along with developments in LBL assembly have resulted in a new breed of micro/nanosensors that are implantable, reliable, reproducible, mechanically and functionally stable, responsive, and miniaturized. In this chapter, the authors discuss the history of glucose sensors, evolution over the past four decades, methods employed to detect glucose levels in fluorescent biosensors, and assays that can be fabricated on to the sensor membrane, immobilized into the membrane as multilayers, or encapsulated within micro/nanocapsules using LBL assembly technology. The authors briefly review the various materials available and currently implemented for fabrication of glucose biosensors using LBL assembly.


2016 ◽  
Vol 11 (2) ◽  
pp. 290-295 ◽  
Author(s):  
Linong Ji ◽  
Xiaohui Guo ◽  
Lixin Guo ◽  
Qian Ren ◽  
Nan Yu ◽  
...  

Objective: Flash glucose monitoring is a new glucose sensing technique that measures interstitial glucose levels for up to 14 days and does not require any calibration. The aim of this study is to evaluate the performance of the new system in Chinese patients with diabetes. Methods: A multicenter, prospective, masked study was performed in a total of 45 subjects with diabetes. Subjects wore 2 sensors at the same time, for up to 14 days. The accuracy was evaluated against capillary blood glucose (BG) and venous Yellow Springs Instrument (YSI; Yellow Springs, OH) measurements. During all 14 days, subjects were asked to perform at least 8 capillary BG tests per day. Each subject attended 3 days of 8-hour clinic sessions to measure YSI and sensor readings every 15 minutes. Results: Forty subjects had evaluable glucose readings, with 6687 of 6696 (99.9%) sensor and capillary BG pairs within consensus error grid zones A and B, including 5824 (87.0%) in zone A. The 6969 sensor and venous YSI pairs resulted in 6965 (99.9%) pairs within zones A and B, including 5755 (82.6%) in zone A. The sensor pairs with BG and YSI result in mean absolute relative difference (MARD) of 10.0% and 10.7%, respectively. Overall between-sensor coefficient of variation (CV) was 8.0%, and the mean lag time was 3.1 (95% confidence interval 2.54 to 4.29) minutes. Conclusions: The system works well for people with diabetes in China, and it is easy to wear and use.


Sign in / Sign up

Export Citation Format

Share Document