scholarly journals Deep Learning Techniques for Automatic Detection of Embryonic Neurodevelopmental Disorders

Diagnostics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27 ◽  
Author(s):  
Omneya Attallah ◽  
Maha A. Sharkas ◽  
Heba Gadelkarim

The increasing rates of neurodevelopmental disorders (NDs) are threatening pregnant women, parents, and clinicians caring for healthy infants and children. NDs can initially start through embryonic development due to several reasons. Up to three in 1000 pregnant women have embryos with brain defects; hence, the primitive detection of embryonic neurodevelopmental disorders (ENDs) is necessary. Related work done for embryonic ND classification is very limited and is based on conventional machine learning (ML) methods for feature extraction and classification processes. Feature extraction of these methods is handcrafted and has several drawbacks. Deep learning methods have the ability to deduce an optimum demonstration from the raw images without image enhancement, segmentation, and feature extraction processes, leading to an effective classification process. This article proposes a new framework based on deep learning methods for the detection of END. To the best of our knowledge, this is the first study that uses deep learning techniques for detecting END. The framework consists of four stages which are transfer learning, deep feature extraction, feature reduction, and classification. The framework depends on feature fusion. The results showed that the proposed framework was capable of identifying END from embryonic MRI images of various gestational ages. To verify the efficiency of the proposed framework, the results were compared with related work that used embryonic images. The performance of the proposed framework was competitive. This means that the proposed framework can be successively used for detecting END.


2021 ◽  
pp. 1063293X2198894
Author(s):  
Prabira Kumar Sethy ◽  
Santi Kumari Behera ◽  
Nithiyakanthan Kannan ◽  
Sridevi Narayanan ◽  
Chanki Pandey

Paddy is an essential nutrient worldwide. Rice gives 21% of worldwide human per capita energy and 15% of per capita protein. Asia represented 60% of the worldwide populace, about 92% of the world’s rice creation, and 90% of worldwide rice utilization. With the increase in population, the demand for rice is increased. So, the productivity of farming is needed to be enhanced by introducing new technology. Deep learning and IoT are hot topics for research in various fields. This paper suggested a setup comprising deep learning and IoT for monitoring of paddy field remotely. The vgg16 pre-trained network is considered for the identification of paddy leaf diseases and nitrogen status estimation. Here, two strategies are carried out to identify images: transfer learning and deep feature extraction. The deep feature extraction approach is combined with a support vector machine (SVM) to classify images. The transfer learning approach of vgg16 for identifying four types of leaf diseases and prediction of nitrogen status results in 79.86% and 84.88% accuracy. Again, the deep features of Vgg16 and SVM results for identifying four types of leaf diseases and prediction of nitrogen status have achieved an accuracy of 97.31% and 99.02%, respectively. Besides, a framework is suggested for monitoring of paddy field remotely based on IoT and deep learning. The suggested prototype’s superiority is that it controls temperature and humidity like the state-of-the-art and can monitor the additional two aspects, such as detecting nitrogen status and diseases.



2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.



Author(s):  
Hari Kishan Kondaveeti ◽  
Gonugunta Priyatham Brahma ◽  
Dandhibhotla Vijaya Sahithi

Deep learning (DL), a part of machine learning (ML), comprises a contemporary technique for processing the images and analyzing the big data with promising outcomes. Deep learning methods are successfully being used in various sectors to gain better results. Agriculture sector is one of the sectors that could be benefitted from the deep learning techniques since the current agriculture techniques cannot keep up with the rapid growth in population. In this chapter, the recent trends in the applications of deep learning techniques in the agricultural sector and the survey of the research efforts that employ deep learning techniques are going to be discussed. Also, the models that are implemented are going to be analyzed and compared with the other existing models.



2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Hao Zhang ◽  
Zhanliang Sang ◽  
Lingwei Xu ◽  
Conghui Cao ◽  
...  

Automatic modulation recognition has successfully used various machine learning methods and achieved certain results. As a subarea of machine learning, deep learning has made great progress in recent years and has made remarkable progress in the field of image and language processing. Deep learning requires a large amount of data support. As a communication field with a large amount of data, there is an inherent advantage of applying deep learning. However, the extensive application of deep learning in the field of communication has not yet been fully developed, especially in underwater acoustic communication. In this paper, we mainly discuss the modulation recognition process which is an important part of communication process by using the deep learning method. Different from the common machine learning methods that require feature extraction, the deep learning method does not require feature extraction and obtains more effects than common machine learning.



2018 ◽  
Author(s):  
Sibel Çimen ◽  
Abdulkerim Çapar ◽  
Dursun Ali Ekinci ◽  
Umut Engin Ayten ◽  
Bilal Ersen Kerman ◽  
...  

AbstractOligodendrocytes wrap around the axons and form the myelin. Myelin facilitates rapid neural signal transmission. Any damage to myelin disrupts neuronal communication leading to neurological diseases such as multiple sclerosis (MS). There is no cure for MS. This is, in part, due to lack of an efficient method for myelin quantification during drug screening. In this study, an image analysis based myelin sheath detection method, DeepMQ, is developed. The method consists of a feature extraction step followed by a deep learning based binary classification module. The images, which were acquired on a confocal microscope contain three channels and multiple z-sections. Each channel represents either oligodendroyctes, neurons, or nuclei. During feature extraction, 26-neighbours of each voxel is mapped onto a 2D feature image. This image is, then, fed to the deep learning classifier, in order to detect myelin. Results indicate that 93.38% accuracy is achieved in a set of fluorescence microscope images of mouse stem cell-derived oligodendroyctes and neurons. To the best of authors’ knowledge, this is the first study utilizing image analysis along with machine learning techniques to quantify myelination.



2021 ◽  
Vol 13 (18) ◽  
pp. 3650
Author(s):  
Ru Luo ◽  
Jin Xing ◽  
Lifu Chen ◽  
Zhouhao Pan ◽  
Xingmin Cai ◽  
...  

Although deep learning has achieved great success in aircraft detection from SAR imagery, its blackbox behavior has been criticized for low comprehensibility and interpretability. Such challenges have impeded the trustworthiness and wide application of deep learning techniques in SAR image analytics. In this paper, we propose an innovative eXplainable Artificial Intelligence (XAI) framework to glassbox deep neural networks (DNN) by using aircraft detection as a case study. This framework is composed of three parts: hybrid global attribution mapping (HGAM) for backbone network selection, path aggregation network (PANet), and class-specific confidence scores mapping (CCSM) for visualization of the detector. HGAM integrates the local and global XAI techniques to evaluate the effectiveness of DNN feature extraction; PANet provides advanced feature fusion to generate multi-scale prediction feature maps; while CCSM relies on visualization methods to examine the detection performance with given DNN and input SAR images. This framework can select the optimal backbone DNN for aircraft detection and map the detection performance for better understanding of the DNN. We verify its effectiveness with experiments using Gaofen-3 imagery. Our XAI framework offers an explainable approach to design, develop, and deploy DNN for SAR image analytics.



2021 ◽  
Author(s):  
Yu Xiang ◽  
Liwei Hu ◽  
Jun Zhang ◽  
Wenyong Wang

Abstract The perception of geometry-features of airfoils is the basis in aerodynamic area for performance prediction, parameterization, aircraft inverse design, etc. There are three approaches to percept the geometric shape of an airfoil, namely manual design of airfoil geometry parameter, polynomial definition and deep learning. The first two methods can directly extract geometry-features of airfoils or polynomial equations of airfoil curves, but the number of features extracted is limited. While deep learning algorithms can extract a large number of potential features (called latent features), however, the features extracted by deep learning are lacking of explicit geometrical meaning. Motivated by the advantages of polynomial definition and deep learning, we propose a geometry-based deep learning feature extraction scheme (named Bézier-based feature extraction, BFE) for airfoils, which consists of two parts: manifold metric feature extraction and geometry-feature fusion encoder (GF encoder). Manifold metric feature extraction, with the help of the Bézier curve, captures features from tangent space of airfoil curves, and GF encoder combines airfoil coordinate data and manifold metrics together to form a novel feature representation. A public UIUC airfoil dataset is used to verify the proposed BFE. Compared with classic Auto-Encoder, the mean square error (MSE) of BFE is reduced by 17.97% ~29.14%.



2020 ◽  
Vol 12 (2) ◽  
pp. 280 ◽  
Author(s):  
Liqin Liu ◽  
Zhenwei Shi ◽  
Bin Pan ◽  
Ning Zhang ◽  
Huanlin Luo ◽  
...  

In recent years, deep learning technology has been widely used in the field of hyperspectral image classification and achieved good performance. However, deep learning networks need a large amount of training samples, which conflicts with the limited labeled samples of hyperspectral images. Traditional deep networks usually construct each pixel as a subject, ignoring the integrity of the hyperspectral data and the methods based on feature extraction are likely to lose the edge information which plays a crucial role in the pixel-level classification. To overcome the limit of annotation samples, we propose a new three-channel image build method (virtual RGB image) by which the trained networks on natural images are used to extract the spatial features. Through the trained network, the hyperspectral data are disposed as a whole. Meanwhile, we propose a multiscale feature fusion method to combine both the detailed and semantic characteristics, thus promoting the accuracy of classification. Experiments show that the proposed method can achieve ideal results better than the state-of-art methods. In addition, the virtual RGB image can be extended to other hyperspectral processing methods that need to use three-channel images.



2017 ◽  
Vol 10 (13) ◽  
pp. 489 ◽  
Author(s):  
Saheb Ghosh ◽  
Sathis Kumar B ◽  
Kathir Deivanai

Deep learning methods are a great machine learning technique which is mostly used in artificial neural networks for pattern recognition. This project is to identify the Whales from under water Bioacoustics network using an efficient algorithm and data model, so that location of the whales can be send to the Ships travelling in the same region in order to avoid collision with the whale or disturbing their natural habitat as much as possible. This paper shows application of unsupervised machine learning techniques with help of deep belief network and manual feature extraction model for better results.



Sign in / Sign up

Export Citation Format

Share Document