scholarly journals Chaperones and Proteostasis: Role in Parkinson’s Disease

Diseases ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 24 ◽  
Author(s):  
Neha Joshi ◽  
Atchaya Raveendran ◽  
Shirisha Nagotu

Proper folding to attain a defined three-dimensional structure is a prerequisite for the functionality of a protein. Improper folding that eventually leads to formation of protein aggregates is a hallmark of several neurodegenerative disorders. Loss of protein homeostasis triggered by cellular stress conditions is a major contributing factor for the formation of these toxic aggregates. A conserved class of proteins called chaperones and co-chaperones is implicated in maintaining the cellular protein homeostasis. Expanding the body of evidence highlights the role of chaperones as central mediators in the formation, de-aggregation and degradation of the aggregates. Altered expression and function of chaperones is associated with many neurodegenerative diseases including Parkinson’s disease. Several studies indicate that chaperones are at the center of the cause and effect cycle of this disease. An overview of the various chaperones that are associated with homeostasis of Parkinson’s disease-related proteins and their role in pathogenicity will be discussed in this review.

1998 ◽  
Vol 158 (2) ◽  
pp. 145-151 ◽  
Author(s):  
A Bateman ◽  
HP Bennett

The granulin/epithelin motif defines a family of structurally unique proteins, of great evolutionary antiquity, which have been implicated as regulators of cell growth. Recurrent in granulin research are the surprising parallels between the granulin and EGF systems. Both are cysteinerich peptides of approximately 6 kDa that can modify cell growth. They show similar, but not identical, biological activities, although granulin/epithelin peptides do not bind EGF receptors; the three-dimensional folds of granulin and EGF are partially superimposible; and the precursors for mammalian granulin/epithelins and EGF are both organized as multiple repeats of conserved cysteine modules. Given the dissimilarity between amino acid sequences of members of the granulin/epithelin family and EGF-related peptides, the parallelism between the two systems probably represents convergent evolution towards related solutions to common biological problems. The granulin/epithelin precursor gene is expressed throughout the body, but its expression is predominantly in epithelial and haematopoietic cells. There is a great deal of versatility in the means by which cells process and handle the granulin/epithelin precursor. In some instances, the precursor is secreted intact (Zhou et al. 1993), and in others it is stored in a vesicular organelle, such as the sperm acrosome (Baba et al. 1993a). It may be processed into small 6-kDa peptides, which, in the neutrophil, can also be stored in vesicles (Bateman et al. 1990, Couto et al. 1992). The 6-kDa peptide forms, the intact precursor, and related proteins such as TGFe, regulate the growth of epithelial and mesenchymal cells. Epithelial cells express putative receptors for granulin/epithelin peptides and TGFe (Culouscou et al. 1993, Parnell et al. 1995). Thus, although much remains to be clarified, granulin/epithelin polypeptides and related proteins are emerging as widely distributed potential autocrine and paracrine growth modulating factors for epithelial and mesenchymal cells.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Rheia Reader

The ability of polypeptides to fold into a functional, three-dimensional structure forms the basis of normal cellular and organ function, however, when this fundamental process goes awry it forms the basis of neurodegenerative diseases. Nearly 1 in 6 people have a neurological condition and these diseases can be debilitating and incurable. Parkinson’s Disease (PD) is the second most common neurodegenerative disease that is known as a movement disorder, but that is also characterized by additional non-motor associated symptoms. The pathophysiological hallmark of PD is the misfolding and aggregation of the protein α-synuclein (α-Syn) and the accompanying loss of neurons that produce dopamine in the brain. There are currently no proven therapies for PD and management options consist of symptom relief. Through the development of multidisciplinary approaches (including nuclear magnetic resonance, high-resolution imaging and animal models of disease), scientists have made great strides in our understanding of the chemical, genetic and molecular basis of PD. Although it is commonly accepted that aggregation of α-Syn is key in the pathogenesis of PD, the extent to which its aggregation plays a causal role in neurodegeneration is still a matter of intense investigation. This review will provide a critical assessment of the importance of α-Syn aggregation in PD and discuss the experimental approaches and current and future therapies for this neurodegenerative disease. Expanding our knowledge of the role of protein aggregation in the pathophysiology of PD is critical for the identification of biomarkers for early disease detection, as well as for the development of novel and specific therapeutic approaches.


Author(s):  
Noah Lubben ◽  
Elizabeth Ensink ◽  
Gerhard A Coetzee ◽  
Viviane Labrie

Abstract The lateralization of the human brain may provide clues into the pathogenesis and progression of neurodegenerative diseases. Though differing in their presentation and underlying pathologies, neurodegenerative diseases are all devastating and share an intriguing theme of asymmetrical pathology and clinical symptoms. Parkinson’s disease, with its distinctive onset of motor symptoms on one side of the body, stands out in this regard, but a review of the literature reveals asymmetries in several other neurodegenerative diseases. Here we review the lateralization of the structure and function of the healthy human brain and the common genetic and epigenetic patterns contributing to the development of asymmetry in health and disease. We specifically examine the role of asymmetry in Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, and interrogate whether these imbalances may reveal meaningful clues about the origins of these diseases. We also propose several hypotheses for how lateralization may contribute to the distinctive and enigmatic features of asymmetry in neurodegenerative diseases, suggesting a role for asymmetry in the choroid plexus, neurochemistry, protein distribution, brain connectivity, and the vagus nerve. Finally, we suggest how future studies may reveal novel insights into these diseases through the lens of asymmetry.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
M. Boublik ◽  
N. Robakis ◽  
J.S. Wall

The three-dimensional structure and function of biological supramolecular complexes are, in general, determined and stabilized by conformation and interactions of their macromolecular components. In the case of ribosomes, it has been suggested that one of the functions of ribosomal RNAs is to act as a scaffold maintaining the shape of the ribosomal subunits. In order to investigate this question, we have conducted a comparative TEM and STEM study of the structure of the small 30S subunit of E. coli and its 16S RNA.The conventional electron microscopic imaging of nucleic acids is performed by spreading them in the presence of protein or detergent; the particles are contrasted by electron dense solution (uranyl acetate) or by shadowing with metal (tungsten). By using the STEM on freeze-dried specimens we have avoided the shearing forces of the spreading, and minimized both the collapse of rRNA due to air drying and the loss of resolution due to staining or shadowing. Figure 1, is a conventional (TEM) electron micrograph of 30S E. coli subunits contrasted with uranyl acetate.


1989 ◽  
Vol 28 (03) ◽  
pp. 92-94 ◽  
Author(s):  
C. Neumann ◽  
H. Baas ◽  
R. Hefner ◽  
G. Hör

The symptoms of Parkinson’s disease often begin on one side of the body and continue to do so as the disease progresses. First SPECT results in 4 patients with hemiparkinsonism using 99mTc-HMPAO as perfusion marker are reported. Three patients exhibited reduced tracer uptake in the contralateral basal ganglia One patient who was under therapy for 1 year, showed a different perfusion pattern with reduced uptake in both basal ganglia. These results might indicate reduced perfusion secondary to reduced striatal neuronal activity.


1993 ◽  
Vol 2 (3) ◽  
pp. 366-382 ◽  
Author(s):  
Miroslaw Cygler ◽  
Joseph D. Schrag ◽  
Joel L. Sussman ◽  
Michal Harel ◽  
Israel Silman ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Karoline Knudsen ◽  
Tatyana D. Fedorova ◽  
Jacob Horsager ◽  
Katrine B. Andersen ◽  
Casper Skjærbæk ◽  
...  

Background: We have hypothesized that Parkinson’s disease (PD) comprises two subtypes. Brain-first, where pathogenic α-synuclein initially forms unilaterally in one hemisphere leading to asymmetric nigrostriatal degeneration, and body-first with initial enteric pathology, which spreads through overlapping vagal innervation leading to more symmetric brainstem involvement and hence more symmetric nigrostriatal degeneration. Isolated REM sleep behaviour disorder has been identified as a strong marker of the body-first type. Objective: To analyse striatal asymmetry in [18F]FDOPA PET and [123I]FP-CIT DaT SPECT data from iRBD patients, de novo PD patients with RBD (PD +RBD) and de novo PD patients without RBD (PD - RBD). These groups were defined as prodromal body-first, de novo body-first, and de novo brain-first, respectively. Methods: We included [18F]FDOPA PET scans from 21 iRBD patients, 11 de novo PD +RBD, 22 de novo PD - RBD, and 18 controls subjects. Also, [123I]FP-CIT DaT SPECT data from iRBD and de novo PD patients with unknown RBD status from the PPPMI dataset was analysed. Lowest putamen specific binding ratio and putamen asymmetry index (AI) was defined. Results: Nigrostriatal degeneration was significantly more symmetric in patients with RBD versus patients without RBD or with unknown RBD status in both FDOPA (p = 0.001) and DaT SPECT (p = 0.001) datasets. Conclusion: iRBD subjects and de novo PD +RBD patients present with significantly more symmetric nigrostriatal dopaminergic degeneration compared to de novo PD - RBD patients. The results support the hypothesis that body-first PD is characterized by more symmetric distribution most likely due to more symmetric propagation of pathogenic α-synuclein compared to brain-first PD.


2020 ◽  
pp. 1-14
Author(s):  
Shelby Shrigley ◽  
Fredrik Nilsson ◽  
Bengt Mattsson ◽  
Alessandro Fiorenzano ◽  
Janitha Mudannayake ◽  
...  

Background: Human induced pluripotent stem cells (hiPSCs) have been proposed as an alternative source for cell replacement therapy for Parkinson’s disease (PD) and they provide the option of using the patient’s own cells. A few studies have investigated transplantation of patient-derived dopaminergic (DA) neurons in preclinical models; however, little is known about the long-term integrity and function of grafts derived from patients with PD. Objective: To assess the viability and function of DA neuron grafts derived from a patient hiPSC line with an α-synuclein gene triplication (AST18), using a clinical grade human embryonic stem cell (hESC) line (RC17) as a reference control. Methods: Cells were differentiated into ventral mesencephalic (VM)-patterned DA progenitors using an established GMP protocol. The progenitors were then either terminally differentiated to mature DA neurons in vitro or transplanted into 6-hydroxydopamine (6-OHDA) lesioned rats and their survival, maturation, function, and propensity to develop α-synuclein related pathology, were assessed in vivo. Results: Both cell lines generated functional neurons with DA properties in vitro. AST18-derived VM progenitor cells survived transplantation and matured into neuron-rich grafts similar to the RC17 cells. After 24 weeks, both cell lines produced DA-rich grafts that mediated full functional recovery; however, pathological changes were only observed in grafts derived from the α-synuclein triplication patient line. Conclusion: This data shows proof-of-principle for survival and functional recovery with familial PD patient-derived cells in the 6-OHDA model of PD. However, signs of slowly developing pathology warrants further investigation before use of autologous grafts in patients.


Sign in / Sign up

Export Citation Format

Share Document