scholarly journals Topology-Based Routing Protocols and Mobility Models for Flying Ad Hoc Networks: A Contemporary Review and Future Research Directions

Drones ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 9
Author(s):  
Ali H. Wheeb ◽  
Rosdiadee Nordin ◽  
Asma’ Abu Samah ◽  
Mohammed H. Alsharif ◽  
Muhammad Asghar Khan

Telecommunications among unmanned aerial vehicles (UAVs) have emerged recently due to rapid improvements in wireless technology, low-cost equipment, advancement in networking communication techniques, and demand from various industries that seek to leverage aerial data to improve their business and operations. As such, UAVs have started to become extremely prevalent for a variety of civilian, commercial, and military uses over the past few years. UAVs form a flying ad hoc network (FANET) as they communicate and collaborate wirelessly. FANETs may be utilized to quickly complete complex operations. FANETs are frequently deployed in three dimensions, with a mobility model determined by the work they are to do, and hence differ between vehicular ad hoc networks (VANETs) and mobile ad hoc networks (MANETs) in terms of features and attributes. Furthermore, different flight constraints and the high dynamic topology of FANETs make the design of routing protocols difficult. This paper presents a comprehensive review covering the UAV network, the several communication links, the routing protocols, the mobility models, the important research issues, and simulation software dedicated to FANETs. A topology-based routing protocol specialized to FANETs is discussed in-depth, with detailed categorization, descriptions, and qualitatively compared analyses. In addition, the paper demonstrates open research topics and future challenge issues that need to be resolved by the researchers, before UAVs communications are expected to become a reality and practical in the industry.

Author(s):  
Hirozumi Yamaguchi ◽  
Weihua Sun ◽  
Teruo Higashino

This chapter introduces geographic routing in vehicular ad hoc networks (VANETs). The aim of this chapter is to clarify the basic principle of geographic VANET routing protocols by stating their ideas. To this goal, we explain the common ideas behind the geographic routing protocols, and consider issues in applying those ideas to vehicular ad hoc networks. Then we summarize a wide variety of protocols; from ones in early design stages to understand the basic principle, to state-of-the-art ones to know recent research trends. After that, we give the detailed design of an example protocol to understand the design principle of VANET geographic routing protocols. Finally, we summarize the protocols introduced in this chapter and discuss future directions for possible research issues.


Author(s):  
Kevin C. Lee ◽  
Uichin Lee ◽  
Mario Gerla

The chapter provides a survey of routing protocols in vehicular ad hoc networks. The routing protocols fall into two major categories of topology-based and position-based routing. The chapter discusses the advantages and disadvantages of these routing protocols, explores the motivation behind their design and trace the evolution of these routing protocols. Finally, it concludes the chapter by pointing out some open issues and possible direction of future research related to VANET routing.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1177 ◽  
Author(s):  
Carolina Tripp-Barba ◽  
Aníbal Zaldívar-Colado ◽  
Luis Urquiza-Aguiar ◽  
José Alfonso Aguilar-Calderón

In the last few years, many routing protocols have been proposed for vehicular ad hoc networks (VANETs) because of their specific characteristics. Protocols that use several metrics have been shown to be the most adequate to VANETs due to their effectiveness in dealing with dynamic environment changes due to vehicle mobility. Metrics such as distance, density, link stability, speed, and position were selected by the authors for the best proposal. Several surveys of routing proposals have been generated to categorize contributions and their application scenarios, but none of them focused on multimetric approaches. In this paper, we present a review of the routing protocols based on more than one metric to select the best route in a VANET. The main objective of this research was to present the contemporary most frequently used metrics in the different proposals and their application scenarios. This review helps in the selection protocols or the creation of metrics when a new protocol is designed.This survey of multimetric VANET routing protocols employed systematic literature-review (SLR) methodology in four well-knownown databases that allowed to analyze current state-of-the-art proposals. In addition, this paper provides a description of these multimetric routing protocols. Our findings indicate that distance and speed are the most popular and versatile metrics. Finally, we define some possible directions for future research related to the use of this class of protocols.


Author(s):  
Raad Alturki ◽  
Rashid Mehmood

The HCPR scheme is implemented as an extension to the OPNET simulation software and is analysed in detail for its QoS performance to deliver multimedia applications over ad hoc networks. It is compared with three well-known and widely used routing protocols: Ad Hoc On Demand Distance Vector (AODV), Optimised Link State Routing (OLSR), and Geographic Routing Protocol (GRP). Several networking scenarios have been carefully configured with variations in networks sizes, applications, codecs, and routing protocols to extensively analyse the proposed scheme. The HCPR enabled ad hoc network outperforms the well-known routing schemes, in particular for relatively large networks and high QoS network loads. These results are promising because many QoS schemes do work for small networks and low network loads but are unable to sustain performance for large networks and high QoS loads. Several directions to extend this research for future work are given.


Author(s):  
Indrani Das ◽  
Sanjoy Das

Geocasting is a subset of conventional multicasting problem. Geocasting means to deliver a message or data to a specific geographical area. Routing refers to the activities necessary to route a message in its travel from source to the destination node. The routing of a message is very important and relatively difficult problems in the context of Ad-hoc Networks because nodes are moving very fast, network load or traffic patterns, and topology of the network is dynamical changes with time. In this chapter, different geocast routing mechanisms used in both Mobile Ad-hoc Networks and Vehicular Ad-hoc Networks. The authors have shown a strong and in-depth analysis of the strengths and weaknesses of each protocol. For delivering geocast message, both the source and destination nodes use location information. The nodes determine their locations by using the Global Positioning System (GPS). They have presented a comprehensive comparative analysis of existing geocast routing protocols and proposed future direction in designing a new routing protocol addressing the problem.


Sign in / Sign up

Export Citation Format

Share Document