scholarly journals Entropy Generation Due to the Heat Transfer for Evolving Spherical Objects

Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 562 ◽  
Author(s):  
Ho-Young Kwak

Heat transfer accompanying entropy generation for the evolving mini and microbubbles in solution is discussed based on the explicit solutions for the hydrodynamic equations related to the bubble motion. Even though the pressure difference between the gas inside the bubble and liquid outside the bubble is a major driving force for bubble evolution, the heat transfer by conduction at the bubble-liquid interface affects the delicate evolution of the bubble, especially for sonoluminescing the gas bubble in sulfuric acid solution. On the other hand, our explicit solutions for the continuity, Euler equation, and Newtonian gravitational equation reveal that supernovae evolve by the gravitational force radiating heat in space during the expanding or collapsing phase. In this article, how the entropy generation due to heat transfer affects the bubble motion delicately and how heat transfer is generated by gravitational energy and evolving speed for the supernovae will be discussed. The heat transfer experienced by the bubble and supernovae during their evolution produces a positive entropy generation rate.

Author(s):  
Anupam Bhandari

Present model analyze the flow and heat transfer of water-based carbon nanotubes (CNTs) [Formula: see text] ferrofluid flow between two radially stretchable rotating disks in the presence of a uniform magnetic field. A study for entropy generation analysis is carried out to measure the irreversibility of the system. Using similarity transformation, the governing equations in the model are transformed into a set of nonlinear coupled differential equations in non-dimensional form. The nonlinear coupled differential equations are solved numerically through the finite element method. Variable viscosity, variable thermal conductivity, thermal radiation, and volume concentration have a crucial role in heat transfer enhancement. The results for the entropy generation rate, velocity distributions, and temperature distribution are graphically presented in the presence of physical and geometrical parameters of the flow. Increasing the values of ferromagnetic interaction number, Reynolds number, and temperature-dependent viscosity enhances the skin friction coefficients on the surface and wall of the lower disk. The local heat transfer rate near the lower disk is reduced in the presence of Harman number, Reynolds number, and Prandtl number. The ferrohydrodynamic flow between two rotating disks might be useful to optimize the use of hybrid nanofluid for liquid seals in rotating machinery.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


2021 ◽  
Vol 2053 (1) ◽  
pp. 012016
Author(s):  
N M Muhammad ◽  
N A C Sidik ◽  
A Saat ◽  
Y Asako ◽  
W M A A Japar ◽  
...  

Abstract Energy management and sustainability in thermal systems require maximum utilization of resources with minimal losses. However, it is rarely unattainable due to the ever-increasing need for a high-performance system combined with device size reduction. The numerical study examined convective heat transfer of an alpha-Alumina-water nanofluid in variable-width corrugated minichannel heat sinks. The objective is to study the impact of nanoparticle volume fractions and flow area variation on the entropy generation rate. The determining variables are 0.005 – 0.02 volume fractions, the fluid velocity 3 – 5.5 m/s and heat flux of 85 W/cm2. The numerical results show an acceptable correlation with the experiment results. The results indicate the thermal entropy production drop with an increase in nanoparticles volume fraction. Contrastingly, the frictional resistance entropy suggests the opposite trend due to the turbulence effect on the fluid viscosity. The induction of Alumina-Water nanofluid with enhanced thermal conductivity declined the entropy generation rate compared to water alone. The increase in width ratio by 16% between the cases translates to at least a 9% increase in thermal entropy production. The outcome of this study can provide designers and operators of thermal systems more insight into entropy management in corrugated heatsinks.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 215 ◽  
Author(s):  
Steve Djetel-Gothe ◽  
François Lanzetta ◽  
Sylvie Bégot

The second law of thermodynamics is applied to evaluate the influence of entropy generation on the performances of a cold heat exchanger of an experimental Stirling refrigeration machine by means of three factors: the entropy generation rate N S , the irreversibility distribution ratio ϕ and the Bejan number B e | N S based on a dimensionless entropy ratio that we introduced. These factors are investigated as functions of characteristic dimensions of the heat exchanger (hydraulic diameter and length), coolant mass flow and cold gas temperature. We have demonstrated the role of these factors on the thermal and fluid friction irreversibilities. The conclusions are derived from the behavior of the entropy generation factors concerning the heat transfer and fluid friction characteristics of a double-pipe type heat exchanger crossed by a coolant liquid (55/45 by mass ethylene glycol/water mixture) in the temperature range 240 K < TC < 300 K. The mathematical model of entropy generation includes experimental measurements of pressures, temperatures and coolant mass flow, and the characteristic dimensions of the heat exchanger. A large characteristic length and small hydraulic diameter generate large entropy production, especially at a low mean temperature, because the high value of the coolant liquid viscosity increases the fluid frictions. The model and experiments showed the dominance of heat transfer over viscous friction in the cold heat exchanger and B e | N S → 1 and ϕ → 0 for mass flow rates m ˙ → 0.1 kg.s−1.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1214 ◽  
Author(s):  
Kun Yang ◽  
Wei Huang ◽  
Xin Li ◽  
Jiabing Wang

The heat transfer and entropy generation in a tube filled with double-layer porous media are analytically investigated. The wall of the tube is subjected to a constant heat flux. The Darcy-Brinkman model is utilized to describe the fluid flow, and the local thermal non-equilibrium model is employed to establish the energy equations. The solutions of the temperature and velocity distributions are analytically derived and validated in limiting case. The analytical solutions of the local and total entropy generation, as well as the Nusselt number, are further derived to analyze the performance of heat transfer and irreversibility of the tube. The influences of the Darcy number, the Biot number, the dimensionless interfacial radius, and the thermal conductivity ratio, on flow and heat transfer are discussed. The results indicate, for the first time, that the Nusselt number for the tube filled with double-layer porous media can be larger than that for the tube filled with single layer porous medium, while the total entropy generation rate for the tube filled with double-layer porous media can be less than that for the tube filled with single layer porous medium. And the dimensionless interfacial radius corresponding to the maximum value of the Nusselt number is different from that corresponding to the minimum value of the total entropy generation rate.


Author(s):  
E. Galvis ◽  
J. R. Culham

In this study the entropy generation minimization method is used to find the optimum channel dimensions in micro heat exchangers with a uniform heat flux. With this approach, pressure drop and heat transfer in the micro channels are considered simultaneously during the optimization analysis. A computational model is developed to find the optimum channel depth knowing other channel geometry dimensions and coolant inlet properties. The flow is assumed laminar and both hydrodynamically and thermally fully developed and incompressible. However, to take into account the effect of the developing length in the friction losses, the Hagenbach’s factor is introduced. The micro channels are assumed to have an isothermal or isoflux boundary condition, non-slip flow, and fluid properties have dependency on temperature accordingly. For these particular case studies, the pressure drop and heat transfer coefficient for the isoflux boundary condition is higher than the isothermal case. Higher heat transfer coefficient and pressure drop were found when the channel size decreased. The optimum channel geometry that minimizes the entropy generation rate tends to be a deep, narrow channel.


2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Mohammad Shanbghazani ◽  
Vahid Heidarpoor ◽  
Marc A. Rosen ◽  
Iraj Mirzaee

The entropy generation is investigated numerically in axisymmetric, steady-state, and incompressible laminar flow in a rotating single free disk. The finite-volume method is used for solving the momentum and energy equations needed for the determination of the entropy generation due to heat transfer and fluid friction. The numerical model is validated by comparing it to previously reported analytical and experimental data for momentum and energy. Results are presented in terms of velocity distribution, temperature, local entropy generation rate, Bejan number, and irreversibility ratio distribution for various rotational Reynolds number and physical cases, using dimensionless parameters. It is demonstrated that increasing rotational Reynolds number increases the local entropy generation rate and irreversibility rate, and that the irreversibility is mainly due to heat transfer while the irreversibility associated with fluid friction is minor.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Rajkumar Sarma ◽  
Pranab Kumar Mondal

We focus on the entropy generation minimization for the flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of applied pressure gradient, interfacial slip, and conjugate heat transfer. We use the simplified Phan–Thien–Tanner model (s-PTT) to represent the rheological behavior of the viscoelastic fluid. Using thermal boundary conditions of the third kind, we solve the transport equations analytically to obtain the velocity and temperature distributions in the flow field, which are further used to calculate the entropy generation rate in the analysis. In this study, the influential role of the following dimensionless parameters on entropy generation rate is examined: the viscoelastic parameter (εDe2), slip coefficient (k¯), channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi) and Peclet number (Pe). We show that there exists a particular value of the abovementioned parameters that lead to a minimum entropy generation rate in the system. We believe the results of this analysis could be of helpful in the optimum design of microfluidic system/devices typically used in thermal management, such as micro-electronic devices, microreactors, and microheat exchangers.


Author(s):  
Kazem Esmailpour ◽  
Behnam Bozorgmehr ◽  
Seyed Mostafa Hosseinalipour ◽  
Arun S. Mujumdar

Purpose – The purpose of this paper is to examine entropy generation rate in the flow and temperature field due pulsed impinging jet on to a flat plate. Heat transfer of pulsed impinging jets has been investigated by many researchers. Entropy generation is one of the parameters related to the second law of thermodynamics which must be analyzed in processes with heat transfer and fluid flow in order to design efficient systems. Effect of velocity profile parameters and various nozzle to plate distances on viscous and thermal entropy generation are investigated. Design/methodology/approach – In this study, the flow and temperature field of a pulsed turbulent impinging jet are simulated numerically by the finite volume method with appropriate boundary conditions. Then, flow and temperature results are used to calculate the rate of entropy generation due to heat transfer and viscous dissipation. Findings – Results show that maximum viscous and thermal entropy generation occurs in the lowest nozzle to plate distance and entropy generation decreases as the nozzle to plate distance increases. Entropy generation in the two early phase of a period in the most frequencies is more than steady state whereas a completely opposite behavior happens in the two latter phase. Increase in the pulsation frequency and amplitude leads to enhancement in entropy generation because of larger temperature and velocity gradients. This phenomenon appears second and even third peaks in entropy generation plots in higher pulsation frequency and amplitude. Research limitations/implications – The predictions may be extended to include various pulsation signal shape, multiple jet configuration, the radiation effect and phase difference between jets. Practical implications – The results of this paper are a valuable source of information for active control of transport phenomena in impinging jet configurations which is used in different industrial applications such as cooling, heating and drying processes. Originality/value – In this paper the entropy generation of pulsed impinging jet was studied for the first time and a comprehensive discussion on numerical results is provided.


Sign in / Sign up

Export Citation Format

Share Document