scholarly journals Tsallis Entropy Index q and the Complexity Measure of Seismicity in Natural Time under Time Reversal before the M9 Tohoku Earthquake in 2011

Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 757 ◽  
Author(s):  
Panayiotis Varotsos ◽  
Nicholas Sarlis ◽  
Efthimios Skordas

The observed earthquake scaling laws indicate the existence of phenomena closely associated with the proximity of the system to a critical point. Taking this view that earthquakes are critical phenomena (dynamic phase transitions), here we investigate whether in this case the Lifshitz–Slyozov–Wagner (LSW) theory for phase transitions showing that the characteristic size of the minority phase droplets grows with time as t 1 / 3 is applicable. To achieve this goal, we analyzed the Japanese seismic data in a new time domain termed natural time and find that an LSW behavior is actually obeyed by a precursory change of seismicity and in particular by the fluctuations of the entropy change of seismicity under time reversal before the Tohoku earthquake of magnitude 9.0 that occurred on 11 March 2011 in Japan. Furthermore, the Tsallis entropic index q is found to exhibit a precursory increase.

2020 ◽  
Author(s):  
Efthimios S Skordas ◽  
Nicholas V. Sarlis ◽  
Mary S Lazaridou-Varotsos ◽  
Panayiotis A Varotsos

<p>By analyzing the seismicity in the new time domain termed natural time [1],  the entropy changes of seismicity before major earthquakes have been studied. It was found [2-5] that the key quantity is the entropy change ΔS under time reversal, which is minimized a few months before major earthquakes such as the M9.0 Tohoku earthquake [2] on 11 March 2011 and the M8.2 Chiapas earthquake [3] in Mexico on 7 September 2017; accompanied by an abrupt increase of its fluctuations [4,5]. Here we discuss how these fluctuations may lead to a procedure through which the occurrence time of an impending mainshock can be estimated [6].</p><p>References</p><p>1. Varotsos P.A., Sarlis N.V. and Skordas E.S., <em>Natural Time Analysis: The new view of time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series</em> (Springer-Verlag, Berlin Heidelberg) 2011.</p><p>2. N. V. Sarlis, E. S. Skordas, and P. A. Varotsos, "A remarkable change of the entropy of seismicity in natural time under time reversal before the super-giant M9 Tohoku earthquake on 11 March 2011", EPL (Europhysics Letters), 124 (2018), 29001.</p><p>3. N. V. Sarlis, E. S. Skordas P. A. Varotsos, A. Ramírez-Rojas, E. L. Flores-Márquez, "Natural time analysis: On the deadly Mexico M8.2 earthquake on 7 September 2017", Physica A 506 (2018), 625-634.</p><p>4. P. A. Varotsos, N. V. Sarlis and E. S. Skordas, "Tsallis Entropy Index q and the Complexity Measure of Seismicity in Natural Time under Time Reversal before the M9 Tohoku Earthquake in 2011", Entropy 20 (2018), 757.</p><p>5. A. Ramírez-Rojas, E. L. Flores-Márquez, N. V. Sarlis and P. A. Varotsos, "The Complexity Measures Associated with the Fluctuations of the Entropy in Natural Time before the Deadly México M8.2 Earthquake on 7 September 2017", Entropy 20 (2018), 477.</p><p>6. E. S. Skordas, N. V. Sarlis and P. A. Varotsos “Identifying the occurrence time of an impending major earthquake by means of the fluctuations of the entropy change under time reversal”, EPL (Europhysics Letters), <em>in press</em>.</p>


2019 ◽  
Vol 37 (3) ◽  
pp. 315-324 ◽  
Author(s):  
Panayiotis A. Varotsos ◽  
Nicholas V. Sarlis ◽  
Efthimios S. Skordas

Abstract. The analysis of earthquake time series in a new time domain termed natural time enables the uncovering of hidden properties in time series of complex systems and has been recently employed as the basis of a method to estimate seismic risk. Natural time also enables the determination of the order parameter of seismicity, which is a quantity by means of which one can identify when the system approaches the critical point (the mainshock occurrence is considered the new phase). Applying this analysis, as an example, to the Japanese seismic data from 1 January 1984 until the super-giant M 9 Tōhoku earthquake on 11 March 2011, we find that almost 3 months before its occurrence the entropy change of seismicity under time reversal is minimized on 22 December 2010, which signals an impending major earthquake. On this date the order parameter fluctuations of seismicity exhibit an abrupt increase. This increase is accompanied by various phenomena; e.g., from this date the horizontal GPS azimuths start to become gradually oriented toward the southern direction, while they had random orientation during the preceding period. Two weeks later, a minimum of the order parameter fluctuations of seismicity appears accompanied by anomalous Earth magnetic field variations and by full alignment of the orientations of GPS azimuths southwards leading to the most intense crust uplift. These phenomena are discussed and found to be in accordance with a physical model which seems to explain on a unified basis anomalous precursory changes observed either in ground-based measurements or in satellite data.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 730 ◽  
Author(s):  
E. Leticia Flores-Márquez ◽  
Alejandro Ramírez-Rojas ◽  
Jennifer Perez-Oregon ◽  
N. V. Sarlis ◽  
E. S. Skordas ◽  
...  

One of the most important subduction zones in the world is located in the Mexican Pacific Coast, where the Cocos plate inserts beneath the North American plate. One part of it is located in the Mexican Pacific Coast, where the Cocos plate inserts beneath the North American plate with different dip angles, showing important seismicity. Under the central Mexican area, such a dip angle becomes practically horizontal and such an area is known as flat slab. An earthquake of magnitude M7.1 occurred on 19 September 2017, the epicenter of which was located in this flat slab. It caused important human and material losses of urban communities including a large area of Mexico City. The seismicity recorded in the flat slab region is analyzed here in natural time from 1995 until the occurrence of this M7.1 earthquake in 2017 by studying the entropy change under time reversal and the variability β of the order parameter of seismicity as well as characterize the risk of an impending earthquake by applying the nowcasting method. The entropy change ΔS under time reversal minimizes on 21 June 2017 that is almost one week after the observation of such a minimum in the Chiapas region where a magnitude M8.2 earthquake took place on 7 September 2017 being Mexico’s largest quake in more than a century. A minimum of β was also observed during the period February–March 2017. Moreover, we show that, after the minimum of ΔS, the order parameter of seismicity starts diminishing, thus approaching gradually the critical value 0.070 around the end of August and the beginning of September 2017, which signals that a strong earthquake is anticipated shortly in the flat slab.


2019 ◽  
Author(s):  
Panayiotis A. Varotsos ◽  
Nicholas V. Sarlis ◽  
Efthimios S. Skordas

Abstract. The analysis of earthquake time series in a new time domain termed natural time enables the uncovering of hidden properties in time series of complex systems and has been recently employed as basis of a method to estimate seismic risk. Applying this analysis, as an example, to the Japanese seismic data from 1 January 1984 until the super-giant M9 Tohoku earthquake on 11 March 2011, we find that almost three months before its occurrence the entropy change of seismicity under time reversal is minimized on 22 December 2010, which signals an impending major earthquake. On this date the order parameter fluctuations of seismicity exhibit abrupt increase. This increase is accompanied by various phenomena, e.g., from this date the horizontal GPS azimuths start to become gradually oriented toward the southern direction, while they had random orientation during the preceding period. Two weeks later, a minimum of the order parameter fluctuations of seismicity appears accompanied by anomalous Earth's magnetic field variations and by full alignment of the orientations of GPS azimuths southwards leading to the most intense crust uplift. These phenomena are discussed and found to be in accordance with a physical model which seems to explain on a unified basis anomalous precursory changes observed either in ground-based measurements or in satellite data.


2013 ◽  
Vol 320 ◽  
pp. 67-71
Author(s):  
Chao Jing ◽  
X.L. Wang ◽  
D.H. Yu ◽  
Y.J. Yang ◽  
B.J. Kang ◽  
...  

The magnetic phase transitions and magnetocaloric properties of Gd5Si0.4In3.6 compound have been investigated. Magnetothermal measurements performed at different conditions reveal that the sample undergoes two magnetic phase transitions. One is a second-order transition from paramagnetic to ferromagnetic state at about 197 K, the other is a first-order transition when the temperature is reduced to 75 K. The magnetocaloric effect around Curie temperature (TC) was calculated in terms of isothermal magnetic entropy change by using Maxwells equation,which remains over a quite wide temperature span of 70 K between the temperature region from160 to 240 K, and thus makes this material attractive for magnetic refrigerator applications.


1999 ◽  
Author(s):  
Richard B. Peterson

Abstract Richard P. Feynman introduced the field of microscale and nanoscale engineering in 1959 by giving a talk on how to make things very small. Feynman’s premise was that no fundamental physical laws limit the size of a machine down to the microscopic level. Is this true for all types of machines? Are micro thermal devices fundamentally different than mechanically-based machines with respect to their scaling laws? This paper demonstrates that micro thermal engines do indeed suffer serious performance degradation as their characteristic size is reduced. A micro thermal engine, and more generally, any thermally-based micro device, depends on establishing a temperature difference between two regions within a small structure. In this paper, the performance of a micro thermal engine is explored as a function of the characteristic length parameter, L. In the development, the important features of thermal engines are discussed in the context of developing simple scaling laws predicting the dependency of the operating efficiency on L. After this is accomplished, a general model is derived for a heat engine operating between two temperature reservoirs and having both intrinsic and extrinsic sources of irreversibility, i.e. thermal conductances and heat leakage paths for the heat flow. With this model and typical numerical values for the conductances, micro heat engine performance is predicted as the characteristic size is reduced. This paper demonstrates that under at least one particular formulation of the problem, there may indeed be some room at the bottom. However, heat transfer does play a critical role in determining micro engine performance and depending on how the heat transfer through the engine is modeled, vanishingly small efficiencies can result as the characteristic engine size goes to zero.


Sign in / Sign up

Export Citation Format

Share Document