scholarly journals Rope Tension Fault Diagnosis in Hoisting Systems Based on Vibration Signals Using EEMD, Improved Permutation Entropy, and PSO-SVM

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 209 ◽  
Author(s):  
Shaohua Xue ◽  
Jianping Tan ◽  
Lixiang Shi ◽  
Jiwei Deng

Fault diagnosis of rope tension is significantly important for hoisting safety, especially in mine hoists. Conventional diagnosis methods based on force sensors face some challenges regarding sensor installation, data transmission, safety, and reliability in harsh mine environments. In this paper, a novel fault diagnosis method for rope tension based on the vibration signals of head sheaves is proposed. First, the vibration signal is decomposed into some intrinsic mode functions (IMFs) by the ensemble empirical mode decomposition (EEMD) method. Second, a sensitivity index is proposed to extract the main IMFs, then the de-noised signal is obtained by the sum of the main IMFs. Third, the energy and the proposed improved permutation entropy (IPE) values of the main IMFs and the de-noised signal are calculated to create the feature vectors. The IPE is proposed to improve the PE by adding the amplitude information, and it proved to be more sensitive in simulations of impulse detecting and signal segmentation. Fourth, vibration samples in different tension states are used to train a particle swarm optimization–support vector machine (PSO-SVM) model. Lastly, the trained model is implemented to detect tension faults in practice. Two experimental results validated the effectiveness of the proposed method to detect tension faults, such as overload, underload, and imbalance, in both single-rope and multi-rope hoists. This study provides a new perspective for detecting tension faults in hoisting systems.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jianfeng Zhang ◽  
Mingliang Liu ◽  
Keqi Wang ◽  
Laijun Sun

During the operation process of the high voltage circuit breaker, the changes of vibration signals can reflect the machinery states of the circuit breaker. The extraction of the vibration signal feature will directly influence the accuracy and practicability of fault diagnosis. This paper presents an extraction method based on ensemble empirical mode decomposition (EEMD). Firstly, the original vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs). Secondly, calculating the envelope of each IMF and separating the envelope by equal-time segment and then forming equal-time segment energy entropy to reflect the change of vibration signal are performed. At last, the energy entropies could serve as input vectors of support vector machine (SVM) to identify the working state and fault pattern of the circuit breaker. Practical examples show that this diagnosis approach can identify effectively fault patterns of HV circuit breaker.


Author(s):  
Chao Zhang ◽  
Zhongxiao Peng ◽  
Shuai Chen ◽  
Zhixiong Li ◽  
Jianguo Wang

During the operation process of a gearbox, the vibration signals can reflect the dynamic states of the gearbox. The feature extraction of the vibration signal will directly influence the accuracy and effectiveness of fault diagnosis. One major challenge associated with the extraction process is the mode mixing, especially under such circumstance of intensive frequency. A novel fault diagnosis method based on frequency-modulated empirical mode decomposition is proposed in this paper. Firstly, several stationary intrinsic mode functions can be obtained after the initial vibration signal is processed using frequency-modulated empirical mode decomposition method. Using the method, the vibration signal feature can be extracted in unworkable region of the empirical mode decomposition. The method has the ability to separate such close frequency components, which overcomes the major drawback of the conventional methods. Numerical simulation results showed the validity of the developed signal processing method. Secondly, energy entropy was calculated to reflect the changes in vibration signals in relation to faults. At last, the energy distribution could serve as eigenvector of support vector machine to recognize the dynamic state and fault type of the gearbox. The analysis results from the gearbox signals demonstrate the effectiveness and veracity of the diagnosis approach.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Qiang-qiang Chen ◽  
Shao-wu Dai ◽  
Hong-de Dai

The vibration signals resulting from rolling bearings are nonlinear and nonstationary, and an approach for the fault diagnosis of rolling bearings using the quantile permutation entropy and EMD (empirical mode decomposition) is proposed. Firstly, the EMD is used to decompose the rolling bearings vibration signal, and several IMFs (intrinsic mode functions) spanning different scales are obtained. Secondly, aiming at the shortcomings of the permutation entropy algorithm, a new permutation entropy algorithm based on sample quantile is proposed, and the quantile permutation entropy of the first few IMFs, which contain the main fault information, is calculated. The quantile permutation entropies are accordingly seen as the characteristic vector and then input to the particle swarm optimization and support vector machine. Finally, the proposed method is applied to the experimental data. The analysis results show that the proposed approach can effectively achieve fault diagnosis of rolling bearings.


2009 ◽  
Vol 16 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Junsheng Cheng ◽  
Dejie Yu ◽  
Jiashi Tang ◽  
Yu Yang

Targeting the characteristics that periodic impulses usually occur whilst the rotating machinery exhibits local faults and the limitations of singular value decomposition (SVD) techniques, the SVD technique based on empirical mode decomposition (EMD) is applied to the fault feature extraction of the rotating machinery vibration signals. The EMD method is used to decompose the vibration signal into a number of intrinsic mode functions (IMFs) by which the initial feature vector matrices could be formed automatically. By applying the SVD technique to the initial feature vector matrices, the singular values of matrices could be obtained, which could be used as the fault feature vectors of support vector machines (SVMs) classifier. The analysis results from the gear and roller bearing vibration signals show that the fault diagnosis method based on EMD, SVD and SVM can extract fault features effectively and classify working conditions and fault patterns of gears and roller bearings accurately even when the number of samples is small.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 519 ◽  
Author(s):  
Weibo Zhang ◽  
Jianzhong Zhou

Aimed at distinguishing different fault categories of severity of rolling bearings, a novel method based on feature space reconstruction and multiscale permutation entropy is proposed in the study. Firstly, the ensemble empirical mode decomposition algorithm (EEMD) was employed to adaptively decompose the vibration signal into multiple intrinsic mode functions (IMFs), and the representative IMFs which contained rich fault information were selected to reconstruct a feature vector space. Secondly, the multiscale permutation entropy (MPE) was used to calculate the complexity of reconstructed feature space. Finally, the value of multiscale permutation entropy was presented to a support vector machine for fault classification. The proposed diagnostic algorithm was applied to three groups of rolling bearing experiments. The experimental results indicate that the proposed method has better classification performance and robustness than other traditional methods.


2013 ◽  
Vol 347-350 ◽  
pp. 430-433
Author(s):  
Wen Bin Zhang ◽  
Jia Xing Zhu ◽  
Ya Song Pu ◽  
Yan Jie Zhou

In this paper, a new comprehensive gearbox fault diagnosis method was proposed based on rank-order morphological filter, ensemble empirical mode decomposition (EEMD) and grey incidence. Firstly, the rank-order morphological filter was defined and the line structure element was selected for rank-order morphological filter to de-noise the original acceleration vibration signal. Secondly, de-noised gearbox vibration signals were decomposed into a finite number of stationary intrinsic mode functions (IMF) and some IMFs containing the most dominant fault information were calculated the energy distribution. Finally, due to the grey incidence has good classify capacity for small sample pattern identification; these energy distributions could serve as the feature vectors, the grey incidence of different gearbox vibration signals was calculated to identify the fault pattern and condition. Practical results show that the proposed method can be used in gear fault diagnosis effectively.


2019 ◽  
Vol 24 (2) ◽  
pp. 303-311 ◽  
Author(s):  
Xiaoxia Zheng ◽  
Guowang Zhou ◽  
Dongdong Li ◽  
Haohan Ren

Rolling bearings are the key components of rotating machinery. However, the incipient fault characteristics of a rolling bearing vibration signal are weak and difficult to extract. To solve this problem, this paper presents a novel rolling bearing vibration signal fault feature extraction and fault pattern recognition method based on variational mode decomposition (VMD), permutation entropy (PE) and support vector machines (SVM). In the proposed method, the bearing vibration signal is decomposed by VMD, and the intrinsic mode functions (IMFs) are obtained in different scales. Then, the PE values of each IMF are calculated to uncover the multi-scale intrinsic characteristics of the vibration signal. Finally, PE values of IMFs are fed into SVM to automatically accomplish the bearing condition identifications. The proposed method is evaluated by rolling bearing vibration signals. The results indicate that the proposed method is superior and can diagnose rolling bearing faults accurately.


2020 ◽  
Vol 10 (16) ◽  
pp. 5542 ◽  
Author(s):  
Rui Li ◽  
Chao Ran ◽  
Bin Zhang ◽  
Leng Han ◽  
Song Feng

Rolling bearings are fundamental elements that play a crucial role in the functioning of rotating machines; thus, fault diagnosis of rolling bearings is of great significance to reduce catastrophic failures and heavy economic loss. However, the vibration signals of rolling bearings are often nonlinear and nonstationary, resulting in difficulty for feature extraction and fault recognition. In this paper, a hybrid method for multiple fault diagnosis of rolling bearings is presented. The bearing vibration signals are decomposed with the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) to denoise and extract nonlinear entropy features. The nonlinear entropy features are further processed to select the more discriminative fault features and to reduce feature dimension. Then a multi-class intelligent recognition model based on ensemble support vector machine (ESVM) is constructed to diagnose different bearing fault modes as well as fault severities. The effectiveness of the proposed method is assessed via experimental case studies of rolling bearings under multiple operational conditions (i.e., speeds and loads). The results show that our method gives better diagnosis results as compared to some existing approaches.


Sign in / Sign up

Export Citation Format

Share Document