scholarly journals Evaluating Temporal Correlations in Time Series Using Permutation Entropy, Ordinal Probabilities and Machine Learning

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1025
Author(s):  
Bruno R. R. Boaretto ◽  
Roberto C. Budzinski ◽  
Kalel L. Rossi ◽  
Thiago L. Prado ◽  
Sergio R. Lopes ◽  
...  

Time series analysis comprises a wide repertoire of methods for extracting information from data sets. Despite great advances in time series analysis, identifying and quantifying the strength of nonlinear temporal correlations remain a challenge. We have recently proposed a new method based on training a machine learning algorithm to predict the temporal correlation parameter, α, of flicker noise (FN) time series. The algorithm is trained using as input features the probabilities of ordinal patterns computed from FN time series, xαFN(t), generated with different values of α. Then, the ordinal probabilities computed from the time series of interest, x(t), are used as input features to the trained algorithm and that returns a value, αe, that contains meaningful information about the temporal correlations present in x(t). We have also shown that the difference, Ω, of the permutation entropy (PE) of the time series of interest, x(t), and the PE of a FN time series generated with α=αe, xαeFN(t), allows the identification of the underlying determinism in x(t). Here, we apply our methodology to different datasets and analyze how αe and Ω correlate with well-known quantifiers of chaos and complexity. We also discuss the limitations for identifying determinism in highly chaotic time series and in periodic time series contaminated by noise. The open source algorithm is available on Github.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
B. R. R. Boaretto ◽  
R. C. Budzinski ◽  
K. L. Rossi ◽  
T. L. Prado ◽  
S. R. Lopes ◽  
...  

AbstractExtracting relevant properties of empirical signals generated by nonlinear, stochastic, and high-dimensional systems is a challenge of complex systems research. Open questions are how to differentiate chaotic signals from stochastic ones, and how to quantify nonlinear and/or high-order temporal correlations. Here we propose a new technique to reliably address both problems. Our approach follows two steps: first, we train an artificial neural network (ANN) with flicker (colored) noise to predict the value of the parameter, $$\alpha$$ α , that determines the strength of the correlation of the noise. To predict $$\alpha$$ α the ANN input features are a set of probabilities that are extracted from the time series by using symbolic ordinal analysis. Then, we input to the trained ANN the probabilities extracted from the time series of interest, and analyze the ANN output. We find that the $$\alpha$$ α value returned by the ANN is informative of the temporal correlations present in the time series. To distinguish between stochastic and chaotic signals, we exploit the fact that the difference between the permutation entropy (PE) of a given time series and the PE of flicker noise with the same $$\alpha$$ α parameter is small when the time series is stochastic, but it is large when the time series is chaotic. We validate our technique by analysing synthetic and empirical time series whose nature is well established. We also demonstrate the robustness of our approach with respect to the length of the time series and to the level of noise. We expect that our algorithm, which is freely available, will be very useful to the community.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1342 ◽  
Author(s):  
Yong Fan ◽  
Litang Hu ◽  
Hongliang Wang ◽  
Xin Liu

Pumping tests are very important means for investigating aquifer properties; however, interpreting the data using common analytical solutions become invalid in complex aquifer systems. The paper aims to explore the potential of machine learning methods in retrieving the pumping tests information in a field site in the Democratic Republic of Congo. A newly planned mining site with a pumping test of three pumping wells and 28 observation wells over one month was chosen to analyze the significance of machine learning methods in the pumping test analysis. Widely used machine learning methods, including correlation, cluster, time-series analysis, artificial neural network (ANN), support vector machine (SVR), random forest (RF) method, and linear regression, are all used in this study. Correlation and cluster analyses among wells provide visual pictures of possible hydraulic connections. The pathway with the best permeability ranges from the depth of 250 m to 350 m. Time-series analysis perfectly captured changes of drawdowns within the three pumping wells. The RF method is found to have the higher accuracy and the lower sensitivity to model parameters than ANN and SVR methods. The coupling of the linear regressive model and analytical solutions is applied to estimate hydraulic conductivities. The results found that ML methods can significantly and effectively improve our understanding of pumping tests by revealing inherent information hidden in those tests.


2017 ◽  
Vol 381 (22) ◽  
pp. 1883-1892 ◽  
Author(s):  
Luciano Zunino ◽  
Felipe Olivares ◽  
Felix Scholkmann ◽  
Osvaldo A. Rosso

Sign in / Sign up

Export Citation Format

Share Document