scholarly journals Pipeline Bonded Joints Assembly and Operation Health Monitoring with Embedded FBG Sensors

2020 ◽  
Vol 2 (1) ◽  
pp. 5
Author(s):  
Thiago Destri Cabral ◽  
Antonio Carlos Zimmermann ◽  
Daniel Pedro Willemann ◽  
Armando Albertazzi Gonçalves, Jr.

Offshore oil and gas platforms present a harsh environment for their installed infrastructure, with pipelines that are subjected to both a corrosive atmosphere and transport of aggressive chemicals being the most critical. These conditions have prompted the industry to substitute metallic pipelines for composite counterparts, often made from fiber-reinforced plastics assembled with bonded joints. Various technologies have emerged in recent years to assess the health of these composite pipelines. In particular, robust speckle metrology techniques such as shearography, although not capable of long-term monitoring, have produced very satisfactory results. However, these inspection techniques require specialized equipment and trained personnel to be flown to offshore platforms, which can incur in non-trivial inspection costs. In this paper, we propose and demonstrate a robust and cost-effective approach to monitor pipeline bonded joints during assembly and operation using fiber Bragg grating (FBG) sensors embedded into the joints’ adhesive layer. This approach allows for informed decisions on when to perform targeted in-depth inspections (e.g., with shearography) based on both real-time and long-term feedback of the FBG sensors data, resulting in lower monitoring costs, a severe increase in monitoring uptime (up to full uptime), and increased operational security.

Author(s):  
Qingping Li ◽  
Liejin Guo ◽  
Haiyuan Yao ◽  
Xin Wang

With the development of the offshore oil and gas fields, multiphase transportation technology is becoming more and more important because it’s a cost-effective way for marginal and offshore fields. However, the complexity characteristics of the gas-oil-water multiphase flow, the hard offshore environmental conditions bring huge challenges to offshore platforms, subsea production systems, subsea pipelines and risers. Severe slugs in offshore risers, hydrate and wax block in subsea pipelines and flowlines will appear when the production system is shut down. In this paper, an experimental facility to simulate the riser slug flow is built, and the flow pattern of severe slug is given, the effects of the incline angles and viscosities on the formation of severe slugs in the riser is experimentally studied and analyzed using water-air, oil-air and water-oil and air. On this base, a cost effective real-time recognition technology of severe slug in the riser is present and its related automatic throttle control method has been validated by natural gas and crude oil with the 25m high riser system, which devotes to the future deepwater riser slug control system.


Author(s):  
R. Song ◽  
Z. Kang ◽  
Yuanlong Qin ◽  
Chunrun Li

Pipeline bundle system consisting of carrier pipe, sleeve pipe and internal flowlines offers innovative solution for the infield transportation of oil and gas. Due to its features, pipeline bundle offers a couple of advantages over conventional pipeline in particular for cases where multi-flowlines and high thermal performance are of great interests. The main benefits and advantages of such system include excellent thermal performance to prevent wax formation and hydrates, multiple bundled flowlines, mechanical and corrosion protection, potential reuse, etc. With the developments of offshore oil and gas industries, more and more hydrocarbon resources are being explored and discovered from shallow to deep water. Pipeline bundle system can be a smart solution for certain applications, which can be safe and cost effective solution. The objective of this paper is to overview pipeline bundle technology, outline detailed engineering design issue and procedure. Focus is given to its potential application in offshore for infield transportation. Engineering design principles and procedures for pipeline bundle system has been highlighted. A companion paper addressed the details of the construction and installation of pipeline bundle system. An example is given at the end of this paper to demonstrate the pipeline bundle system concept and its application.


2014 ◽  
Author(s):  
K.. Francis-LaCroix ◽  
D.. Seetaram

Abstract Trinidad and Tobago offshore platforms have been producing oil and natural gas for over a century. Current production of over 1500 Bcf of natural gas per year (Administration, 2013) is due to extensive reserves in oil and gas. More than eighteen of these wells are high-producing wells, producing in excess of 150 MMcf per day. Due to their large production rates, these wells utilize unconventionally large tubulars 5- and 7-in. Furthermore, as is inherent with producing gas, there are many challenges with the production. One major challenge occurs when wells become liquid loaded. As gas wells age, they produce more liquids, namely brine and condensate. Depending on flow conditions, the produced liquids can accumulate and induce a hydrostatic head pressure that is too high to be overcome by the flowing gas rates. Applying surfactants that generate foam can facilitate the unloading of these wells and restore gas production. Although the foaming process is very cost effective, its application to high-producing gas wells in Trinidad has always been problematic for the following reasons: Some of these producers are horizontal wells, or wells with large deviation angles.They were completed without pre-installed capillary strings.They are completed with large tubing diameters (5.75 in., 7 in.). Recognizing that the above three factors posed challenges to successful foam applications, major emphasis and research was directed toward this endeavor to realize the buried revenue, i.e., the recovery of the well's potential to produce natural gas. This research can also lead to the application of learnings from the first success to develop treatment for additional wells, which translates to a revenue boost to the client and the Trinidad economy. Successful treatments can also be used as correlations to establish an industry best practice for the treatment of similarly completed wells. This paper will highlight the successes realized from the treatment of three wells. It will also highlight the anomalies encountered during the treatment process, as well as the lessons learned from this treatment.


2021 ◽  
Author(s):  
Le Ronan Bayon ◽  
Leah Boyd

Abstract This paper presents a novel approach to finding solutions to unsafe work practices in oil and gas environments—from manufacturing facilities to offshore platforms. The ‘Center of Excellence’ approach is a stepwise process for classifying safety events and harnessing data to reduce incidents during offshore oil and gas E&P activities. The approach includes identifying focus topics related to unsafe practices, forming cross-functional teams with significant field or impacted personnel participation, developing and implementing measures, utilizing the hierarchy of controls to mitigate the issue, and raising company-wide awareness through training and targeted information campaigns. The Center of Excellence process gives top priority to those activities in order to reduce the highest severity and most frequent safety incidents. The teams are then able to more clearly identify feasible solutions, including engineering controls, training, campaigns, and procedures to contain the hazards. The active engagement and involvement of frontline employees who either work in the field or on the factory floor is critical to understand the daily hazards of their work activities and the success of the Center of Excellence approach. With these employees acting as a champion of the developed solution, other workers are more likely to accept and adopt it in their daily routine. This paper reviews practical examples of how the Center of Excellence approach has led to safer practices in the workplace. Examples include improved safety measures for using tightening tools, which led to more than 50% reduction in hand injuries and other safety incidents. A recent example of using the approach to develop safer practices during manual handling of loads (MHL) is also presented. The examples highlight the benefits of bringing multifaceted teams and multiple industry-accepted safety concepts together to resolve common work safety challenges, which can serve as a blueprint for oil and gas companies to reduce incidents across their enterprise.


2010 ◽  
Vol 50 (1) ◽  
pp. 593
Author(s):  
Silvio Stojic ◽  
Antoine Hanekom ◽  
Russell Colman

Leaks of hydrocarbon to the atmosphere can be a major facility safety risk and personnel occupational health and safety (OHS) risk for oil and gas producing and processing facilities. Normally closed valves that pass or leak in-line are also a major contributor to product loss and facility risk. Component failures of these types have two common and challenging features: they are hard to find among the tens of thousands of potential leak sources, and the leakage rates either to the atmosphere or in-line can vary from minor to potentially catastrophic. In the past seven to eight years, advanced methods for finding and managing leaks resulting from poor component integrity have been developed. This paper covers some of ATMECO’s accumulated knowledge developed over many leak surveys of both onshore and offshore oil and gas facilities. Typical statistical profiles of leaks from uncontrolled facilities are presented. The types of component failure that lead to leaks are discussed along with probabilistic analyses relating to the next likely failure. Technologies of leak detection are reviewed, highlighting benefits and problems. Also discussed are the prerequisite data capture and management systems needed for a competent, robust and auditable system to manage component integrity. Gas imaging technology is becoming one of the core hydrocarbon leak detection tools and also assists greatly in the analyses of leaks and in providing valuable input to remedial actions. Survey design requirements for continuing and cost-effective component leak risk management are reviewed. Recommendations are provided about the preferred methods and management structures for programs designed to minimise component integrity risks.


2020 ◽  
Vol 8 (12) ◽  
pp. 995
Author(s):  
Alexey Cherepovitsyn ◽  
Anna Tsvetkova ◽  
Nadejda Komendantova

In the face of today’s global challenges, oil and gas companies must define long-term priorities and opportunities in implementing complex Arctic offshore projects, taking into account environmental, economic, technological and social aspects. In this regard, ensuring strategic sustainability is the basis for long-term development. The aim of the study is to analyze existing approaches to the concept of “strategic sustainability” of an offshore Arctic oil and gas project and to develop a methodological approach to assessing the strategic sustainability of offshore oil and gas projects. In the theoretical part of the study, the approaches to defining strategic sustainability were reviewed, and their classification was completed, and the most appropriate definition of strategic sustainability for an offshore oil and gas project was chosen. The method of hierarchy analysis was used for strategic sustainability assessment. Specific criteria have been proposed to reflect the technical, geological, investment, social and environmental characteristics important to the offshore oil and gas project. The strategic sustainability of 5 offshore oil and gas projects was analyzed using an expert survey as part of the hierarchy analysis method. Recommendations were made on the development of an offshore project management system to facilitate the emergence of new criteria and improve the quality of the strategic sustainability assessment of offshore projects in the Arctic.


2013 ◽  
Vol 284-287 ◽  
pp. 1436-1440 ◽  
Author(s):  
Min Zhang ◽  
Shu Qing Wang ◽  
Jia Li Fu ◽  
Xiao Long Xu

Offshore jacket platforms have been widely used in offshore oil and gas exploitation under hostile ocean environments. Finite element models of such structures need to have many degrees of freedom (DOFs) to represent the geometrical detail of complex structures, which leads to more computing power when performing the analysis and what’s more, the incompatibility in the number of degrees of freedom to the experimental models. Therefore, there is a need to simplify the analytical model by reducing the DOFs and in the process, making the essential eigen-properties agree with those of the experimental model is desired. In this paper, a scaled physical experimental model of an offshore jacket platform is simplified using the recently developed model refinement scheme. Mathematically, the procedure to implement the model refinement technique is an application of cross-model cross-mode (CMCM) method for model updating. The master degrees of freedom are chosen according to the placement of accelerometers in the experiment. Upon the completion of the refinement, the improved reduced jacket platform model matches the dynamic characteristics of the experimental model quite well.


Sign in / Sign up

Export Citation Format

Share Document