scholarly journals Compact Double Notch Coplanar and Microstrip Bandstop Filters Using Metamaterial—Inspired Open Ring Resonators

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 330
Author(s):  
Juan Hinojosa ◽  
Félix L. Martínez-Viviente ◽  
Alejandro Alvarez-Melcon

Compact double notch coplanar and microstrip bandstop filters are described. They are based on a version of the open interconnected split ring resonator (OISRR) integrated in microstrip or coplanar waveguides. The OISRR introduces an RLC resonator connected in parallel with the propagating microstrip line. Therefore, this resonator can be modeled as a shunt circuit to ground, with the R, L and C elements connected in series. The consequence for the frequency response of the device is a notch band at the resonant frequency of the RLC shunt circuit. The number of notch bands can be controlled by adding more OISRRs, since each pair of rings can be modeled as a shunt circuit and therefore introduces an additional notch band. In this paper, we demonstrate that these additional rings can be introduced in a concentric way in the same cell, so the size of the device does not increase and a compact multi-notch bandstop response is achieved, with the same number of notch bands as pairs of concentric rings, plus an additional spurious band at a higher frequency.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Tahir Ejaz ◽  
Hamood Ur Rahman ◽  
T. Tauqeer ◽  
Adnan Masood ◽  
Tahir Zaidi

Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Dibakar Roy Chowdhury ◽  
Ranjan Singh ◽  
Antoinette J. Taylor ◽  
Hou-Tong Chen ◽  
Weili Zhang ◽  
...  

We present a review of the different coupling schemes in a planar array of terahertz metamaterials. The gap-to-gap near-field capacitive coupling between split-ring resonators in a unit cell leads to either blue shift or red shift of the fundamental inductive-capacitive (LC) resonance, depending on the position of the split gap. The inductive coupling is enhanced by decreasing the inter resonator distance resulting in strong blue shifts of theLCresonance. We observe theLCresonance tuning only when the split-ring resonators are in close proximity of each other; otherwise, they appear to be uncoupled. Conversely, the higher-order resonances are sensitive to the smallest change in the inter particle distance or split-ring resonator orientation and undergo tremendous resonance line reshaping giving rise to a sharp subradiant resonance mode which produces hot spots useful for sensing applications. Most of the coupling schemes in a metamaterial are based on a near-field effect, though there also exists a mechanism to couple the resonators through the excitation of lowest-order lattice mode which facilitates the long-range radiative or diffractive coupling in the split-ring resonator plane leading to resonance line narrowing of the fundamental as well as the higher order resonance modes.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
John F. O'Hara ◽  
Evgenya Smirnova ◽  
Abul K. Azad ◽  
Hou-Tong Chen ◽  
Antoinette J. Taylor

The properties of planar, single-layer metamaterials, or metafilms, are studied by varying the structural components of the split-ring resonators used to comprise the overall medium. Measurements and simulations reveal how minor design variations in split-ring resonator structures can result in significant changes in the macroscopic properties of the metafilm. A transmission-line/circuit model is also used to clarify some of the behavior and design limitations of the metafilms. Though our results are illustrated in the terahertz frequency range, the work has broader implications, particularly with respect to filtering, modulation, and switching devices.


Author(s):  
Shailesh M. Rao ◽  
Prabhugoud I. Basarkod

The authors have attempted to influence an embedded square split ring resonator (SSRR) response in a stacked non-homogeneous substrate to demonstrate a quad-band antenna. The purpose is to produce multiband operations of a microstrip patch antenna. The highlighted factor is the effect of embedding an SSRR and the differing relative permittivity of the substrate on the side length of the SSRR. The analysis shows that a non-homogeneous dual substrate patch produces multiple bands compared to a single substrate patch antenna without any parameter change. A dual substrate antenna fabricated using FR4 and Rogers RT/Duroid 5880 copper clad sheets with a dimension of 85.6x54x0.908 mm3 (0.314λ0x0.198λ0x0.003λ0). The antenna resonates at 1.1, 2.45, 3.65 and 5.25 GHz in the L-, S- and C-bands. It is possible to employ the patch antenna in WLAN (dual-band) and WiMAX applications and suitable for mobile broadcast service at 1.1 GHz. The authors compare the simulated and measured results of a prototype in the article. The maximum measured gain is 5.48 dBi at 1.1 GHz and 4.025 dBi at 3.65 GHz. The measured bandwidth is 60 MHz (1.2%) at 5.25 GHz.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gnanasekaran Revathi ◽  
Savarimuthu Robinson

Abstract In this paper, a metamaterial bandpass filter using Split Ring Resonators (SRR) is designed, analyzed, and developed for WLAN applications at 2.4 GHz frequency band. Here, metamaterial bandpass filters with and without Defected Ground Structure (DGS) are designed, analyzed and compared. The filter structure shows a considerable size reduction with 50% fractional bandwidth, quality factor of 2 and wide bandwidth. The simulation results of the proposed filters offered good insertion loss and return loss response. The filters have been modeled, fabricated and their performance has been evaluated using the Method Of Moment (MOM) based electromagnetic simulator IE3D. The dimensions of the proposed filter is 20 × 9 × 1.6 mm which is considerably reduced. The simulated and measured results projected that the proposed metamaterial filters are well suited for WLAN applications.


2012 ◽  
Vol 4 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Mahima Kapoor ◽  
K. S. Daya ◽  
G. S. Tyagi

In this paper characterization of dielectric materials in liquid and powder phase using concentric closed and split ring resonators of length λ, λ/2, and λ/4 is reported. Experimental results have been validated by simulations and theoretically modeling. Sensitivity of the resonator with closed rings was maximum. Experimentally extracted values of dielectric constant of ferrite ranged from 14.05 to 15.1 with closed ring resonators and from 13.6 to 14.02 with split ring resonator, respectively. For spirulina platensis the dielectric constant was lying in the range 1.78–1.93 and 1.74–2.04 with closed ring and split ring resonators, respectively. The values extracted experimentally are in good agreement with simulation and theoretically found values. However, the values obtained from closed ring resonator were in agreement with the dielectric constant values of ferrite and spirulina platensis.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Noelia Ortiz ◽  
Francisco Falcone ◽  
Mario Sorolla

A simple and successful dual band patch linear polarized rectangular antenna design is presented. The dual band antenna is designed etching a complementary rectangular split-ring resonator in the patch of a conventional rectangular patch antenna. Furthermore, a parametric study shows the influence of the location of the CSRR particle on the radiation characteristics of the dual band antenna. Going further, a miniaturization of the conventional rectangular patch antenna and an enhancement of the complementary split-ring resonator resonance gain versus the location of the CSRR on the patch are achieved. The dual band antenna design has been made feasible due to the quasistatic resonance property of the complementary split-ring resonators. The simulated results are compared with measured data and good agreement is reported.


Sign in / Sign up

Export Citation Format

Share Document