scholarly journals The Frequency and Real-Time Properties of the Microcontroller Implementation of Fractional-Order PID Controller

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 524
Author(s):  
Krzysztof Oprzędkiewicz ◽  
Maciej Rosół ◽  
Jakub Żegleń-Włodarczyk

The paper presents time, frequency, and real-time properties of a fractional-order PID controller (FOPID) implemented at a STM 32 platform. The implementation uses CFE approximation and discrete version of a Grünwald–Letnikov operator (FOBD). For these implementations, experimental step responses and Bode frequency responses were measured. Real-time properties of the approximations are also examined and analyzed. Results of tests show that the use of CFE approximation allows to better keep the soft real-time requirements with an accuracy level a bit worse than when using the FOBD. The presented results can be employed in construction-embedded fractional control systems implemented at platforms with limited resources.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ying-Qing Guo ◽  
Jie Zhang ◽  
Dong-Qing He ◽  
Jin-Bao Li

The magnetorheological elastomer (MRE) is a kind of smart material, which is often processed as vibration isolation and mitigation devices to realize the vibration control of the controlled system. The key to the effective isolation of vibration and shock absorption is how to accurately and in real time determine the magnitude of the applied magnetic field according to the motion state of the controlled system. In this paper, an optimal fuzzy fractional-order PID (OFFO-PID) algorithm is proposed to realize the vibration isolation and mitigation control of the precision platform with MRE devices. In the algorithm, the particle swarm optimization algorithm is used to optimize initial values of the fractional-order PID controller, and the fuzzy algorithm is used to update parameters of the fractional-order PID controller in real time, and the fractional-order PID controller is used to produce the control currents of the MRE devices. Numerical analysis for a platform with the MRE device is carried out to validate the effectiveness of the algorithm. Results show that the OFFO-PID algorithm can effectively reduce the dynamic responses of the precision platform system. Also, compared with the fuzzy fractional-order PID algorithm and the traditional PID algorithm, the OFFO-PID algorithm is better.


2018 ◽  
Vol 44 (3) ◽  
pp. 2091-2102 ◽  
Author(s):  
Kishore Bingi ◽  
Rosdiazli Ibrahim ◽  
Mohd Noh Karsiti ◽  
Sabo Miya Hassan ◽  
Vivekananda Rajah Harindran

2021 ◽  
Vol 11 (15) ◽  
pp. 6693
Author(s):  
Sagar Gupta ◽  
Abhaya Pal Singh ◽  
Dipankar Deb ◽  
Stepan Ozana

Robotic manipulators have been widely used in industries, mainly to move tools into different specific positions. Thus, it has become necessary to have accurate knowledge about the tool position using forward kinematics after accessing the angular locations of limbs. This paper presents a simulation study in which an encoder attached to the limbs gathers information about the angular positions. The measured angles are applied to the Kalman Filter (KF) and its variants for state estimation. This work focuses on the use of fractional order controllers with a Two Degree of Freedom Serial Flexible Links (2DSFL) and Two Degree of Freedom Serial Flexible Joint (2DSFJ) and undertakes simulations with noise and a square wave as input. The fractional order controllers fit better with the system properties than integer order controllers. The KF and its variants use an unknown and assumed process and measurement noise matrices to predict the actual data. An optimisation problem is proposed to achieve reasonable estimations with the updated covariance matrices.


Sign in / Sign up

Export Citation Format

Share Document