scholarly journals Reliable Multicast Based on Congestion-Aware Cache in ICN

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1579
Author(s):  
Yingjie Duan ◽  
Hong Ni ◽  
Xiaoyong Zhu

Reliable multicast distribution is essential for some applications such as Internet of Things (IoT) alarm information and important file distribution. Traditional IP reliable multicast usually relies on multicast source retransmission for recovery losses, causing huge recovery delay and redundancy. Moreover, feedback implosion tends to occur towards multicast source as the number of receivers grows. Information-Centric Networking (ICN) is an emerging network architecture that is efficient in content distribution by supporting multicast and in-network caching. Although ubiquitous in-network caching provides nearby retransmission, the design of cache strategy greatly affects the performance of loss recovery. Therefore, how to recover losses efficiently and quickly is an urgent problem to be solved in ICN reliable multicast. In this paper, we first propose an overview architecture of ICN-based reliable multicast and formulate a problem using recovery delay as the optimization target. Based on the architecture, we present a Congestion-Aware Probabilistic Cache (CAPC) strategy to reduce recovery delay by caching recently transmitted chunks during multicast transmission. Then, we propose NACK feedback aggregation and recovery isolation scheme to decrease recovery overhead. Finally, experimental results show that our proposal can achieve fully reliable multicast and outperforms other approaches in recovery delay, cache hit ratio, transmission completion time, and overhead.

1997 ◽  
Vol 27 (4) ◽  
pp. 289-300 ◽  
Author(s):  
Jörg Nonnenmacher ◽  
Ernst Biersack ◽  
Don Towsley

1998 ◽  
Vol 6 (4) ◽  
pp. 349-361 ◽  
Author(s):  
J. Nonnenmacher ◽  
E.W. Biersack ◽  
D. Towsley

Author(s):  
Donghui Zhang ◽  
Ruijie Liu

Abstract Orienteering has gradually changed from a professional sport to a civilian sport. Especially in recent years, orienteering has been widely popularized. Many colleges and universities in China have also set up this course. With the improvement of people’s living conditions, orienteering has really become a leisure sport in modern people’s life. The reduced difficulty of sports enables more people to participate, but it also exposes a series of problems. As the existing positioning technology is relatively backward, the progress in personnel tracking, emergency services, and other aspects is slow. To solve these problems, a new intelligent orienteering application system is developed based on the Internet of things. ZigBee network architecture is adopted in the system. ZigBee is the mainstream scheme in the current wireless sensor network technology, which has many advantages such as convenient carrying, low power consumption, and signal stability. Due to the complex communication environment in mobile signal, the collected information is processed by signal amplification and signal anti-interference technology. By adding anti-interference devices, video isolators and other devices, the signal is guaranteed to the maximum extent. In order to verify the actual effect of this system, through a number of experimental studies including the relationship between error and traffic radius and the relationship between coverage and the number of anchor nodes, the data shows that the scheme studied in this paper has a greater improvement in comprehensive performance than the traditional scheme, significantly improving the accuracy and coverage. Especially the coverage is close to 100% in the simulation experiment. This research has achieved good results and can be widely used in orienteering training and competition.


Author(s):  
Wael S. Afifi ◽  
Ali A. El-Moursy ◽  
Mohamed Saad ◽  
Salwa M. Nassar ◽  
Hadia M. El-Hennawy

The fifth generation of wireless networks (5G) will kick off with evolved mobile broadband services as promised by several mobile-related associations, researchers, and operators. Compared to 4G, 5G aims to provide greater data rates with lower latency and higher coverage to numerous users who stream ubiquitous multimedia services. 5G benefits the innovation of internet of things (IoT) as well. To this end, several modifications in the network architecture are required. This chapter is discussing the role of cloud computing centers in 5G networks, and how such integration could be implemented as found in the literature. The benefits of cloud/5G integration will be explained as well. In addition, some challenges related to the integration will be demonstrated.


Author(s):  
Wael S. Afifi ◽  
Ali A. El-Moursy ◽  
Mohamed Saad ◽  
Salwa M. Nassar ◽  
Hadia M. El-Hennawy

The fifth generation of wireless networks (5G) will kick off with evolved mobile broadband services as promised by several mobile-related associations, researchers, and operators. Compared to 4G, 5G aims to provide greater data rates with lower latency and higher coverage to numerous users who stream ubiquitous multimedia services. 5G benefits the innovation of internet of things (IoT) as well. To this end, several modifications in the network architecture are required. This chapter is discussing the role of cloud computing centers in 5G networks, and how such integration could be implemented as found in the literature. The benefits of cloud/5G integration will be explained as well. In addition, some challenges related to the integration will be demonstrated.


Sign in / Sign up

Export Citation Format

Share Document