scholarly journals Review of Electric Vehicle Technologies, Charging Methods, Standards and Optimization Techniques

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1910
Author(s):  
Syed Muhammad Arif ◽  
Tek Tjing Lie ◽  
Boon Chong Seet ◽  
Soumia Ayyadi ◽  
Kristian Jensen

This paper presents a state-of-the-art review of electric vehicle technology, charging methods, standards, and optimization techniques. The essential characteristics of Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) are first discussed. Recent research on EV charging methods such as Battery Swap Station (BSS), Wireless Power Transfer (WPT), and Conductive Charging (CC) are then presented. This is followed by a discussion of EV standards such as charging levels and their configurations. Next, some of the most used optimization techniques for the sizing and placement of EV charging stations are analyzed. Finally, based on the insights gained, several recommendations are put forward for future research.

1995 ◽  
Vol 27 (6) ◽  
pp. 835-862 ◽  
Author(s):  
C O Quandt

The California Air Resources Board has mandated that by 1998 2% of new vehicles sold in California must be zero emission, effectively, electric vehicles. This requirement is largely responsible for the electric vehicle development programs run by almost every global automobile manufacturer that does business in the United States. At present, no single electric vehicle technology, from battery type, to propulsion system, to vehicle design, represents a standard for a protoelectric vehicle industry. In this paper competing electric vehicle technologies are reviewed, leading public and private electric vehicle research programs worldwide are summarized, and the barriers faced by competing technological systems in terms of manufacturing and infrastructural requirements are examined.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1650 ◽  
Author(s):  
Bong-Gi Choi ◽  
Byeong-Chan Oh ◽  
Sungyun Choi ◽  
Sung-Yul Kim

Establishing electric vehicle supply equipment (EVSE) to keep up with the increasing number of electric vehicles (EVs) is the most realistic and direct means of promoting their spread. Using traffic data collected in one area; we estimated the EV charging demand and selected priority fast chargers; ranging from high to low charging demand. A queueing model was used to calculate the number of fast chargers required in the study area. Comparison of the existing distribution of fast chargers with that suggested by the traffic load eliminating method demonstrated the validity of our traffic-based location approach.


Sign in / Sign up

Export Citation Format

Share Document