scholarly journals Development of a High-Power-Factor Power Supply for an Atmospheric-Pressure Plasma Jet

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2119
Author(s):  
Chi-Feng Su ◽  
Chih-Tung Liu ◽  
Jong-Shinn Wu ◽  
Ming-Tzu Ho

This paper presents the design and implementation of a miniaturized high-voltage power supply with power factor correction (PFC) for atmospheric-pressure plasma jet (APPJ) applications. The sinusoidal output frequency and voltage of the power supply can be controlled independently from 16 to 24 kHz and from 1 to 10 kVpeak, respectively. A helium APPJ load is used to assess the performance of the developed power supply. It is shown that the developed high-voltage power supply operates effectively, and the designed PFC converter improves the input current distortion of the power supply. Not only the power factor of the power supply is increased from 0.41 to 0.95, but it also provides a low-ripple DC voltage, which reduces the high-voltage ripple of the output from 730 to 50 Vp-p. In this paper, the proposed design integrates the PFC converter into the high-voltage power supply so that the developed power supply has better electrical characteristics and the overall power supply can be significantly miniaturized.

BIBECHANA ◽  
2020 ◽  
Vol 17 ◽  
pp. 133-138 ◽  
Author(s):  
H B Baniya ◽  
R P Guragain ◽  
B Baniya ◽  
G Qin ◽  
D P Subedi

Atmospheric Pressure Plasma Jet (APPJ) has many applications in material processing such as surface modification and biomedical material processing. APPJ has been generated by a high voltage power supply (0-20 KV) at an operating frequency of (20-30) 23 kHz. This paper reports the generation and characterization of APPJ in Argon environment and its application in the surface modification of polymeric materials. The discharge has been characterized by optical and electrical methods. In order to characterize the plasma jet, its electron temperature and electron density has been determined by optical emissions spectroscopy. The surface properties of the untreated and plasma treated Polyamide (PA) samples were characterized by contact angle measurement and surface energy analysis. BIBECHANA 17 (2020) 133-138


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hom Bahadur Baniya ◽  
Rajesh Prakash Guragain ◽  
Binod Baniya ◽  
Deepak Prasad Subedi

This paper reports the generation of cold plasma jet working under atmospheric pressure condition, for surface treatment of polymeric films. The discharge has been characterized by electrical and optical methods. The electrical property of the discharge has been studied by taking current-voltage wave forms using voltage and current probes. The production of argon plasma jet is done in atmospheric conditions which are relatively much cheaper, convenient, and safer to use. The atmospheric pressure plasma jet sustained in pure argon has been used to improve wettability of polypropylene (PP). Cold atmospheric pressure plasma jet (CAPPJ) has been generated by a high-voltage power supply (5.5 kV, 0-20 kV) at an operating frequency of 20 kHz. The surface properties of the controls and plasma-treated PP samples were characterized by contact angle measurement, surface free energy measurement, scanning electron microscopy, and the Fourier transform-infrared spectroscopy analysis.


2020 ◽  
Vol 8 (2) ◽  
pp. S1-S14
Author(s):  
Hom Bahadur Baniya ◽  
Rajesh Prakash Guragain ◽  
Binod Baniya ◽  
Deepak Prasad Subedi

The cold plasma technology is gaining popularity as one of the most effective tools for a wide range of applications. Cold atmospheric pressure plasma jet (CAPPJ) has attracted considerable attention in recent times for materials processing such as surface modification and biomedical applications. The cold atmospheric pressure plasma jet sustained in pure argon has been used here to modify the surface properties of polypropylene. CAPPJ has been generated by a high voltage power supply 5 kV at an operating frequency of 20 kHz. This paper reports the diagnostics of CAPPJ in argon environment by electrical and optical methods and its application in the surface modification of polypropylene (PP). The surface properties of the untreated and plasma-treated PP samples were characterized by contact angle measurements, surface free energy determination, scanning electron microscopy and Fourier transform infrared spectroscopy analysis. Most of the previous work has used RF power supply which is more expensive compared to the power supply used in the present study. The plasma jet is designed with locally available materials and can be used for continuous treatment for long time. We have successfully developed a plasma device that is able to generate a non-equilibrium atmospheric pressure argon plasma jet of low temperature. Therefore, a cost-effective system of generating a plasma jet at atmospheric pressure with potential applications in materials processing and biomedical research has been developed.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 683
Author(s):  
Huiliang Jin ◽  
Caixue Tang ◽  
Haibo Li ◽  
Yuanhang Zhang ◽  
Yaguo Li

The continuous phase plate (CPP) is the vital diffractive optical element involved in laser beam shaping and smoothing in high-power laser systems. The high gradients, small spatial periods, and complex features make it difficult to achieve high accuracy when manufacturing such systems. A high-accuracy and high-efficiency surface topography manufacturing method for CPP is presented in this paper. The atmospheric pressure plasma jet (APPJ) system is presented and the removal characteristics are studied to obtain the optimal processing parameters. An optimized iterative algorithm based on the dwell point matrix and a fast Fourier transform (FFT) is proposed to improve the accuracy and efficiency in the dwell time calculation process. A 120 mm × 120 mm CPP surface topography with a 1326.2 nm peak-to-valley (PV) value is fabricated with four iteration steps after approximately 1.6 h of plasma processing. The residual figure error between the prescribed surface topography and plasma-processed surface topography is 28.08 nm root mean square (RMS). The far-field distribution characteristic of the plasma-fabricated surface is analyzed, for which the energy radius deviation is 11 μm at 90% encircled energy. The experimental results demonstrates the potential of the APPJ approach for the manufacturing of complex surface topographies.


2019 ◽  
Vol 675 ◽  
pp. 34-42 ◽  
Author(s):  
Md. Mokter Hossain ◽  
Quang Hung Trinh ◽  
Duc Ba Nguyen ◽  
M.S.P. Sudhakaran ◽  
Young Sun Mok

Sign in / Sign up

Export Citation Format

Share Document