scholarly journals Experimental Study of Cold Atmospheric Pressure Plasma Jet and Its Application in the Surface Modification of Polypropylene

2020 ◽  
Vol 8 (2) ◽  
pp. S1-S14
Author(s):  
Hom Bahadur Baniya ◽  
Rajesh Prakash Guragain ◽  
Binod Baniya ◽  
Deepak Prasad Subedi

The cold plasma technology is gaining popularity as one of the most effective tools for a wide range of applications. Cold atmospheric pressure plasma jet (CAPPJ) has attracted considerable attention in recent times for materials processing such as surface modification and biomedical applications. The cold atmospheric pressure plasma jet sustained in pure argon has been used here to modify the surface properties of polypropylene. CAPPJ has been generated by a high voltage power supply 5 kV at an operating frequency of 20 kHz. This paper reports the diagnostics of CAPPJ in argon environment by electrical and optical methods and its application in the surface modification of polypropylene (PP). The surface properties of the untreated and plasma-treated PP samples were characterized by contact angle measurements, surface free energy determination, scanning electron microscopy and Fourier transform infrared spectroscopy analysis. Most of the previous work has used RF power supply which is more expensive compared to the power supply used in the present study. The plasma jet is designed with locally available materials and can be used for continuous treatment for long time. We have successfully developed a plasma device that is able to generate a non-equilibrium atmospheric pressure argon plasma jet of low temperature. Therefore, a cost-effective system of generating a plasma jet at atmospheric pressure with potential applications in materials processing and biomedical research has been developed.

2015 ◽  
Vol 43 (3) ◽  
pp. 713-725 ◽  
Author(s):  
Marco Boselli ◽  
Vittorio Colombo ◽  
Matteo Gherardi ◽  
Romolo Laurita ◽  
Anna Liguori ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2119
Author(s):  
Chi-Feng Su ◽  
Chih-Tung Liu ◽  
Jong-Shinn Wu ◽  
Ming-Tzu Ho

This paper presents the design and implementation of a miniaturized high-voltage power supply with power factor correction (PFC) for atmospheric-pressure plasma jet (APPJ) applications. The sinusoidal output frequency and voltage of the power supply can be controlled independently from 16 to 24 kHz and from 1 to 10 kVpeak, respectively. A helium APPJ load is used to assess the performance of the developed power supply. It is shown that the developed high-voltage power supply operates effectively, and the designed PFC converter improves the input current distortion of the power supply. Not only the power factor of the power supply is increased from 0.41 to 0.95, but it also provides a low-ripple DC voltage, which reduces the high-voltage ripple of the output from 730 to 50 Vp-p. In this paper, the proposed design integrates the PFC converter into the high-voltage power supply so that the developed power supply has better electrical characteristics and the overall power supply can be significantly miniaturized.


2018 ◽  
Vol 352 ◽  
pp. 338-347 ◽  
Author(s):  
Taiana She Mir Mui ◽  
Rogério Pinto Mota ◽  
Antje Quade ◽  
Luis Rogério de Oliveira Hein ◽  
Konstantin Georgiev Kostov

Sign in / Sign up

Export Citation Format

Share Document