scholarly journals GicoFace: A Deep Face Recognition Model Based on Global-Information Loss Function

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2387
Author(s):  
Xin Wei ◽  
Wei Du ◽  
Xiaoping Hu ◽  
Jie Huang ◽  
Weidong Min

As CNNs have a strong capacity to learn discriminative facial features, CNNs have greatly promoted the development of face recognition, where the loss function plays a key role in this process. Nonetheless, most of the existing loss functions do not simultaneously apply weight normalization, apply feature normalization and follow the two goals of enhancing the discriminative capacity (optimizing intra-class/inter-class variance). In addition, they are updated by only considering the feedback information of each mini-batch, but ignore the information from the entire training set. This paper presents a new loss function called Gico loss. The deep model trained with Gico loss in this paper is then called GicoFace. Gico loss satisfies the four aforementioned key points, and is calculated with the global information extracted from the entire training set. The experiments are carried out on five benchmark datasets including LFW, SLLFW, YTF, MegaFace and FaceScrub. Experimental results confirm the efficacy of the proposed method and show the state-of-the-art performance of the method.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 54
Author(s):  
Peng Liu ◽  
Zonghua Zhang ◽  
Zhaozong Meng ◽  
Nan Gao

Depth estimation is a crucial component in many 3D vision applications. Monocular depth estimation is gaining increasing interest due to flexible use and extremely low system requirements, but inherently ill-posed and ambiguous characteristics still cause unsatisfactory estimation results. This paper proposes a new deep convolutional neural network for monocular depth estimation. The network applies joint attention feature distillation and wavelet-based loss function to recover the depth information of a scene. Two improvements were achieved, compared with previous methods. First, we combined feature distillation and joint attention mechanisms to boost feature modulation discrimination. The network extracts hierarchical features using a progressive feature distillation and refinement strategy and aggregates features using a joint attention operation. Second, we adopted a wavelet-based loss function for network training, which improves loss function effectiveness by obtaining more structural details. The experimental results on challenging indoor and outdoor benchmark datasets verified the proposed method’s superiority compared with current state-of-the-art methods.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1234
Author(s):  
Lei Zha ◽  
Yu Yang ◽  
Zicheng Lai ◽  
Ziwei Zhang ◽  
Juan Wen

In recent years, neural networks for single image super-resolution (SISR) have applied more profound and deeper network structures to extract extra image details, which brings difficulties in model training. To deal with deep model training problems, researchers utilize dense skip connections to promote the model’s feature representation ability by reusing deep features of different receptive fields. Benefiting from the dense connection block, SRDensenet has achieved excellent performance in SISR. Despite the fact that the dense connected structure can provide rich information, it will also introduce redundant and useless information. To tackle this problem, in this paper, we propose a Lightweight Dense Connected Approach with Attention for Single Image Super-Resolution (LDCASR), which employs the attention mechanism to extract useful information in channel dimension. Particularly, we propose the recursive dense group (RDG), consisting of Dense Attention Blocks (DABs), which can obtain more significant representations by extracting deep features with the aid of both dense connections and the attention module, making our whole network attach importance to learning more advanced feature information. Additionally, we introduce the group convolution in DABs, which can reduce the number of parameters to 0.6 M. Extensive experiments on benchmark datasets demonstrate the superiority of our proposed method over five chosen SISR methods.


Machines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 35 ◽  
Author(s):  
Hung-Cuong Trinh ◽  
Yung-Keun Kwon

Feature construction is critical in data-driven remaining useful life (RUL) prediction of machinery systems, and most previous studies have attempted to find a best single-filter method. However, there is no best single filter that is appropriate for all machinery systems. In this work, we devise a straightforward but efficient approach for RUL prediction by combining multiple filters and then reducing the dimension through principal component analysis. We apply multilayer perceptron and random forest methods to learn the underlying model. We compare our approach with traditional single-filtering approaches using two benchmark datasets. The former approach is significantly better than the latter in terms of a scoring function with a penalty for late prediction. In particular, we note that selecting a best single filter over the training set is not efficient because of overfitting. Taken together, we validate that our multiple filters-based approach can be a robust solution for RUL prediction of various machinery systems.


2019 ◽  
Vol 56 (24) ◽  
pp. 241505
Author(s):  
李燊 Li Shen ◽  
苏寒松 Su Hansong ◽  
刘高华 Liu Gaohua ◽  
吴慧华 Wu Huihua ◽  
王萌 Wang Meng

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Wen Qian ◽  
Chao Zhou ◽  
Dengyin Zhang

In this paper, we present an extremely computation-efficient model called FAOD-Net for dehazing single image. FAOD-Net is based on a streamlined architecture that uses depthwise separable convolutions to build lightweight deep neural networks. Moreover, the pyramid pooling module is added in FAOD-Net to aggregate the context information of different regions of the image, thereby improving the ability of the network model to obtain the global information of the foggy image. To get the best FAOD-Net, we use the RESIDE training set to train our proposed model. In addition, we have carried out extensive experiments on the RESIDE test set. We use full-reference and no-reference image quality evaluation indicators to measure the effect of dehazing. Experimental results show that the proposed algorithm has satisfactory results in terms of defogging quality and speed.


Author(s):  
Shuhuan Zhao

Face recognition (FR) is a hotspot in pattern recognition and image processing for its wide applications in real life. One of the most challenging problems in FR is single sample face recognition (SSFR). In this paper, we proposed a novel algorithm based on nonnegative sparse representation, collaborative presentation, and probabilistic graph estimation to address SSFR. The proposed algorithm is named as Nonnegative Sparse Probabilistic Estimation (NNSPE). To extract the variation information from the generic training set, we first select some neighbor samples from the generic training set for each sample in the gallery set and the generic training set can be partitioned into some reference subsets. To make more meaningful reconstruction, the proposed method adopts nonnegative sparse representation to reconstruct training samples, and according to the reconstruction coefficients, NNSPE computes the probabilistic label estimation for the samples of the generic training set. Then, for a given test sample, collaborative representation (CR) is used to acquire an adaptive variation subset. Finally, the NNSPE classifies the test sample with the adaptive variation subset and probabilistic label estimation. The experiments on the AR and PIE verify the effectiveness of the proposed method both in recognition rates and time cost.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Kuaini Wang ◽  
Jingjing Zhang ◽  
Yanyan Chen ◽  
Ping Zhong

Least squares support vector machine (LS-SVM) is a powerful tool for pattern classification and regression estimation. However, LS-SVM is sensitive to large noises and outliers since it employs the squared loss function. To solve the problem, in this paper, we propose an absolute deviation loss function to reduce the effects of outliers and derive a robust regression model termed as least absolute deviation support vector regression (LAD-SVR). The proposed loss function is not differentiable. We approximate it by constructing a smooth function and develop a Newton algorithm to solve the robust model. Numerical experiments on both artificial datasets and benchmark datasets demonstrate the robustness and effectiveness of the proposed method.


Author(s):  
Hayder Najm ◽  
Hayder Ansaf ◽  
Oday A. Hassen

Human Face Recognition for forensic investigations and e-governance is widely adopted so that the specific face points can be trained and further investigations can be done. In this approach, the key points of human face with the dynamic features are extracted and trained in the deep neural network model so that the intrinsic aspects of the human face can be realized and further can be used for the criminal investigation or social analytics based applications. In this research manuscript, the usage of deep learning based convolutional network is integrated for the human face analytics and recognition for diversified applications. It is done to have the cavernous evaluation patterns in multiple domains for the knowledge discovery and predictive features of the human face identification domain.


Sign in / Sign up

Export Citation Format

Share Document