scholarly journals ACE: A Routing Algorithm Based on Autonomous Channel Scheduling for Bluetooth Mesh Network

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 113
Author(s):  
Minyue Wang ◽  
Yeming Li ◽  
Jiamei Lv ◽  
Yi Gao ◽  
Cheng Qiao ◽  
...  

The Internet of Things (IoT) interconnects massive cyber-physical devices (CPD) to provide various applications, such as smart home and smart building. Bluetooth Mesh is an emerging networking technology, which can be used to organize a massive network with Bluetooth Low Energy (BLE) devices. Managed-flooding protocol is used in Bluetooth Mesh to route the data packets. Although it is a highly desirable option when data transmission is urgent, it is inefficient in a larger and denser mesh network due to the collisions of broadcast data packets. In this paper, we introduce ACE: a Routing Algorithm based on Autonomous Channel Scheduling for Bluetooth Mesh Network. ACE relies on the existing Bluetooth Mesh messages to distribute routes without additional traffic overhead and conducts a beacon-aware routing update adaptively as the topology evolves. In ACE, BLE channel resources can be efficiently utilized by a channel scheduling scheme for each node locally and autonomously without any neighborly negotiation. We implement ACE on the nRF52840 from Nordic Semiconductor and evaluate its effectiveness on our testbed. Compared to the Bluetooth Mesh, our experiments proved that ACE could reduce the end-to-end latency by 16%, alleviate packets collisions issues, and increase the packet delivery ratio (PDR) by 30% under heavy traffic. Moreover, simulation results verified that ACE has better scalability when the size and density of networks become larger and denser.

Author(s):  
Sudesh Kumar ◽  
Abhishek Bansal ◽  
Ram Shringar Raw

Recently, the flying ad-hoc network (FANETs) is a popular networking technology used to create a wireless network through unmanned aerial vehicles (UAVs). In this network, the UAV nodes work as intermediate nodes that communicate with each other to transmit data packets over the network, in the absence of fixed an infrastructure. Due to high mobility degree of UAV nodes, network formation and deformation among the UAVs are very frequent. Therefore, effective routing is a more challenging issue in FANETs. This paper presents performance evaluations and comparisons of the popular topology-based routing protocol namely AODV and position-based routing protocol, namely LAR for high speed mobility as well as a verity of the density of UAV nodes in the FANETs environment through NS-2 simulator. The extensive simulation results have shown that LAR gives better performance than AODV significantly in terms of the packet delivery ratio, normalized routing overhead, end-to-end delay, and average throughput, which make it a more effective routing protocol for the highly dynamic nature of FANETs.


2021 ◽  
Author(s):  
Anusha Chintam ◽  
A. Sra ◽  
T.V. Madhusudhan Rao

Abstract Wireless mesh network formed temporarily by using mobile hosts (nodes) without the help of any centralized and cooperate to dispatch the data packets through wireless links over the network. Due to this decentralization, each node act as both router as well as host for dispatching packets in the network. Because of a dynamic nature that is the mobility nature of the node in a network is vulnerable to various types of attacks. Some of the attacks are gray and black hole attacks. These attacks are advertised incorrect information regarding the shortest path to the sink node. This paper proposes a secure Dynamic Source Routing (SDSR) for providing a secure and safe route between the origin and sink nodes which identify and remove the gray and black hole nodes in the network. The proposed work is simulated by using the NS2 simulator tool and got the better performance for considered performance variables such as packet delivery ratio, throughput and node overhead. The simulation results give better performance compared to normal DSR and selfish DSR with increased packet delivery ratio and throughput and with decreased overhead of the network.


Algorithms ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 119 ◽  
Author(s):  
Yucheng Lin ◽  
Zhigang Chen ◽  
Jia Wu ◽  
Leilei Wang

The mobility of nodes leads to dynamic changes in topology structure, which makes the traditional routing algorithms of a wireless network difficult to apply to the opportunistic network. In view of the problems existing in the process of information forwarding, this paper proposed a routing algorithm based on the cosine similarity of data packets between nodes (cosSim). The cosine distance, an algorithm for calculating the similarity between text data, is used to calculate the cosine similarity of data packets between nodes. The data packet set of nodes are expressed in the form of vectors, thereby facilitating the calculation of the similarity between the nodes. Through the definition of the upper and lower thresholds, the similarity between the nodes is filtered according to certain rules, and finally obtains a plurality of relatively reliable transmission paths. Simulation experiments show that compared with the traditional opportunistic network routing algorithm, such as the Spray and Wait (S&W) algorithm and Epidemic algorithm, the cosSim algorithm has a better transmission effect, which can not only improve the delivery ratio, but also reduce the network transmission delay and decline the routing overhead.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mohammad Meftah Alrayes ◽  
Sanjay Kumar Biswash ◽  
Neeraj Tyagi ◽  
Rajeev Tripathi ◽  
Arun Kumar Misra ◽  
...  

AODV-MR (on-demand routing protocol with multi-radio extension) has been designed to support multi-radio interfaces; it uses more than one interface of the same mesh router or gateways for broadcasting duplicated control packets (i.e., RREQ, RRER, and HELLO message) or to rebroadcast it. We have modified AODV-MR, by allocating one interface in a dynamic manner for sending routing/control packets or data packets. This allocation of interfaces is based on type of mesh routers and traffic direction. The efficiency and effectiveness of the modification work have been evaluated compared with AODV-MR in terms of packet delivery ratio, routing packet overhead, end to end delay, and throughput.


2019 ◽  
Vol 01 (02) ◽  
pp. 31-39 ◽  
Author(s):  
Duraipandian M. ◽  
Vinothkanna R.

The paper proposing the cloud based internet of things for the smart connected objects, concentrates on developing a smart home utilizing the internet of things, by providing the embedded labeling for all the tangible things at home and enabling them to be connected through the internet. The smart home proposed in the paper concentrates on the steps in reducing the electricity consumption of the appliances at the home by converting them into the smart connected objects using the cloud based internet of things and also concentrates on protecting the house from the theft and the robbery. The proposed smart home by turning the ordinary tangible objects into the smart connected objects shows considerable improvement in the energy consumption and the security provision.


IoT ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 140-162
Author(s):  
Hung Nguyen-An ◽  
Thomas Silverston ◽  
Taku Yamazaki ◽  
Takumi Miyoshi

We now use the Internet of things (IoT) in our everyday lives. The novel IoT devices collect cyber–physical data and provide information on the environment. Hence, IoT traffic will count for a major part of Internet traffic; however, its impact on the network is still widely unknown. IoT devices are prone to cyberattacks because of constrained resources or misconfigurations. It is essential to characterize IoT traffic and identify each device to monitor the IoT network and discriminate among legitimate and anomalous IoT traffic. In this study, we deployed a smart-home testbed comprising several IoT devices to study IoT traffic. We performed extensive measurement experiments using a novel IoT traffic generator tool called IoTTGen. This tool can generate traffic from multiple devices, emulating large-scale scenarios with different devices under different network conditions. We analyzed the IoT traffic properties by computing the entropy value of traffic parameters and visually observing the traffic on behavior shape graphs. We propose a new method for identifying traffic entropy-based devices, computing the entropy values of traffic features. The method relies on machine learning to classify the traffic. The proposed method succeeded in identifying devices with a performance accuracy up to 94% and is robust with unpredictable network behavior with traffic anomalies spreading in the network.


2012 ◽  
Vol 516-517 ◽  
pp. 1414-1418 ◽  
Author(s):  
Hua Yin ◽  
Bin Fa Long ◽  
Nai Zhou Wang

This article discussed the basic principles of the power line carrier application technology and an example scheme, The unique advantage of the power line carrier networking technology is applied in the Internet of things. The advantage of the application of the power line carrier in the difficult environment of radio frequency application and layout is pointed out.


Sign in / Sign up

Export Citation Format

Share Document