scholarly journals Line Frequency Instability of One-Cycle-Controlled Boost Power Factor Correction Converter

Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 203 ◽  
Author(s):  
Rui Zhang ◽  
Wei Ma ◽  
Lei Wang ◽  
Min Hu ◽  
Longhan Cao ◽  
...  

Power Factor Correction (PFC) converters are widely used in engineering. A classical PFC control circuit employs two complicated feedback control loops and a multiplier, while the One-Cycle-Controlled (OCC) PFC converter has a simple control circuit. In OCC PFC converters, the voltage loop is implemented with a PID control and the multiplier is not needed. Although linear theory is used in designing the OCC PFC converter control circuit, it cannot be used in predicting non-linear phenomena in the converter. In this paper, a non-linear model of the OCC PFC Boost converter is proposed based on the double averaging method. The line frequency instability of the converter is predicted by studying the DC component, the first harmonic component and the second harmonic component of the main circuit and the control circuit. The effect of the input voltage and the output capacitance on the stability of the converter is studied. The correctness of the proposed model is verified with numerical simulations and experimental measurements.

Author(s):  
R. A. Rani ◽  
Shakir Saat ◽  
Yusmarnita Yusop ◽  
Huzaimah Husin ◽  
F. K. Abdul Rahman ◽  
...  

This paper presents the effect of total harmonic distortion (THD) in power factor correction (PFC) at non-linear load. This study focuses on the relationship between THD and PFC. This is beacuse,the power factor affects THD. This occurs in power system as we have variety of loads, i. e linear load or non-linear load. The variety of loads will influence the sinusoidal waveform, which comes out from harmonic distortion. Thus, based on this study, we can compare the effective method in improving the power factor as it will not disturb the performance of THD. The focus of study is on the single phase load, where the voltage restriction is 240 V.  The analysis will  only focus on the consumer, which depends on the variety of non-linear load. Besides, the parameters for analysis are based on the percentage of THD and the value of power factor. The instrument for measuring the parameter is based on power factor correction device or technique. On the other hand, the method that was used for this study is based on simulation which incorporated the Multisim software. At the end of ths study, we can choose the most effective method that can be used to improve the power factor correction without disturbing the THD.


2013 ◽  
Vol 18 (2) ◽  
pp. 972-981
Author(s):  
Juliano de Pelegrini Lopes ◽  
Maikel Fernando Menke ◽  
William Alegranci Venturini ◽  
Fábio Ecke Bisogno ◽  
Álysson Raniere Seidel

2004 ◽  
Vol 13 (03) ◽  
pp. 599-612
Author(s):  
ILYA ZELTSER ◽  
SAM BEN-YAAKOV

The feasibility of producing a modular Active Power Factor Correction (APFC) system was studied analytically and experimentally. It is shown that the novel control scheme that does not need the sensing of the input voltage is highly compatible with the modular, plug-and-play concept. Modularity is achieved by aggregating practically all the electronics in an IC or hybrid unit that may also include the power switch. This unit plus a line rectifier, inductor and bus capacitor are all that it takes to form an APFC system. It is demonstrated that dynamic stability is assured by the proposed inherent robust control method. This plug-and-play solution will greatly simplify and reduce the cost of the design and manufacturing of APFC front ends.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850127 ◽  
Author(s):  
Vinaya Sagar Kommukuri ◽  
Kanungo Barada Mohanty ◽  
Aditi Chatterjee ◽  
Kishor Thakre

In this paper, a high performance single-phase modified bridgeless AC–DC converter with reduced switch voltage stress for power factor correction (PFC) is introduced. The proposed converter is based on a single-ended primary-inductance converter (SEPIC) to meet the demands of PFC to unity and output voltage regulation. To reduce the number of components, the input bridge is combined with the SEPIC converter since the conventional SEPIC PFC is suffering with high conduction losses. It offers many advantages, such as fewer semiconductor devices in current flowing path which lead to improve the thermal management, low stress on each component, improved efficiency, high power factor compared to classical converter. Detailed analysis and design equations of the converter are presented. Simulation and experimental results are discussed for a 300[Formula: see text]W prototypeunder the universal input voltage (85–235[Formula: see text]V) to validate the performance of the converter.


Sign in / Sign up

Export Citation Format

Share Document