scholarly journals A Simplified Design Inline Microstrip-to-Waveguide Transition

Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 215 ◽  
Author(s):  
José Pérez-Escudero ◽  
Alicia Torres-García ◽  
Ramón Gonzalo ◽  
Iñigo Ederra

A simplified design of an inline transition between microstrip and rectangular waveguide is presented in this paper. The transition makes use of a dielectric filled rectangular waveguide (DFRW) as an intermediate step, which simplifies manufacturing and allows for an analytical design. The behavior of the transition has been experimentally validated in the W-band by means of a back-to-back configuration. Good performance has been achieved: a return loss greaterthan 10 dB and mean insertion loss lower than 1 dB.

2010 ◽  
Vol 40-41 ◽  
pp. 331-334
Author(s):  
Jiang An Han ◽  
Jun Xu

A novel millimeter-wave transition from microstrip to rectangular waveguide is introduced in this paper. The theory for this design is explained. The strip conductor on microstrip, which is introduced from the center of a rectangular waveguide broad-wall to its E-plane, is shaped into a triangular loop in the waveguide terminated by a short circuit. A back to back transition operating at Ka band was simulated and fabricated. The experimental results showed the insertion loss of a back to back transition is less than 2.2dB with its return loss greater than 9.1dB from 26.5 GHz to 35.5 GHz.


2011 ◽  
Vol 130-134 ◽  
pp. 1990-1993 ◽  
Author(s):  
Kuang Da Wang ◽  
Wei Hong ◽  
Ke Wu

In this paper, a broadband and simple vertical transition between substrate integrated waveguide and standard air-filled rectangular waveguide is design and experimentally verified. From full-wave simulation of the structure, a relative bandwidth of 19.5% in W-band with return loss better than 20dB is reached. Then, five copies of back-to-back connected transitions are fabricated on RT/Duroid 5880 substrate. The experimental results show that the transition pairs have an average of 15% relative bandwidth with return loss better than 12dB and insert loss lower than 1.2dB. To explain the differences between simulated and tested results, an error analysis is presented.


2015 ◽  
Vol 8 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Teng Li ◽  
Wenbin Dou

In this paper, a novel wideband right-angle transition between thin substrate integrated waveguide (SIW) and rectangular waveguide (RWG) based on multi-section structure operating at center frequency 31.5 GHz is presented. A multi-section SIW with a rectangular aperture etched on the broad wall and two stepped ridges embedded in the RWG flange are introduced to obtain a wide impedance matching. The simulations show that the bandwidth with return loss better than 20 dB is about 17 GHz. In order to verify our designs, two back-to-back transitions with different lengths are fabricated and measured. The experimental results agree well with simulations. The proposed component shows an insertion loss less than 0.44 dB and a return loss better than 14.5 dB over 12.15 GH, which corresponds to 38.57% bandwidth.


2014 ◽  
Vol 668-669 ◽  
pp. 799-802
Author(s):  
Hai Yan Jin ◽  
Teng Yue

The paper presents a design of rectangular waveguide-SIW transition, which provides a broadband and low insertion loss performance. The broadband transition is realized by using double-rhombus antenna probe inserted into rectangular metal waveguide. The transition is simulated and measured at 9-20GHz. The measured results show that a good agreement with simulation and an insertion loss less than 2.8 dB and a return loss better than 10 dB are obtained at 10–18.5 GHz for a back-to-back structure.


2013 ◽  
Vol 562-565 ◽  
pp. 1098-1102
Author(s):  
Hui Liang Liu ◽  
Chen Xu Zhao ◽  
Ling Li ◽  
Ze Wen Liu

This paper presents a novel high performance W-band MEMS duplexer for digital signal transceiver applications. The design of duplexer filters follows the insertion loss method with a Chebyshev polynomial to meet the desired spectral responses. The insertion loss and return loss of the optimized duplexer are -0.3dB and -18dB respectively, while the isolation between two pass bands is -55dB. A micro-fabrication process is designed based on MEMS technology. The deep reactive ion etching (DRIE) is used for high-aspect-ratio filter cavity mold structure. Micro-electroforming, plastic embossing, and electroplating techniques are used for low-cost and high-precision mass production program for the duplexer. Fabrication error tolerance is analyzed and it is reasonable to control the shift of frequency and return loss in the range of 0.05GHz and 2dB respectively with the designed fabrication process based on MEMS technology. It proves that the proposed micromachining fabrication technique is suitable for high performance W-band waveguide filter and duplexer design in terms of stability of RF performance.


2015 ◽  
Vol 12 (19) ◽  
pp. 20150682-20150682
Author(s):  
Yong Fang ◽  
Baoqing Zeng ◽  
Zhicai Zhang ◽  
Hai Zhang ◽  
Lei Yu ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
pp. 1
Author(s):  
M. Reza Hidayat ◽  
Mohamad Hamzah Zamzam ◽  
Salita Ulitia Prini

A waveguide is a transmission medium in the form of a pipe and is made from a single conductor. A waveguide has the function of delivering electromagnetic waves with a frequency of 300 MHz - 300 GHz and is able to direct the waves in a particular direction. In its development, a waveguide can be used as a filter. A filter consists of several circuits designed to pass signals that are generated at a specific frequency and attenuate undesired signals. One type of filter that can pass a signal in a particular frequency range and block signals that are not included in that frequency range is a bandpass filter. In this article, we study a rationing analysis on rectangular waveguide using TEmn mode followed by an implementation of a bandpass filter in the frequency range of 3.3-3.5 GHz for S-Band Wireless Broadband and Fixed Satellite. The observation process is done by shifting the position of the connector (power supply) as much as five times the shift to get the results as desired. Based on the analysis of the simulation process using Ansoft HFSS software, it is observed that the optimized results of the rectangular waveguide mode TE10 were obtained at a distance between connectors of 30 mm with a cut-off frequency of 3.3 GHz, the value of the return loss parameter of -34.442 dB and an insertion loss of -0.039 dB. Whereas, the optimized TE20 mode can be obtained at a distance of 70 mm between connectors, with a cut-off frequency of 3.5 GHz, the value of the return loss parameter of -28.718 dB and an insertion loss of -0.045. The measurement of TE10 mode in our Vector Network Analyzer (VNA) shows a cut-off frequency of 3.2 GHz, with a value of the return loss of -18.73 dB and an insertion loss of -2.70 dB. Meanwhile, a measurement of TE20 mode results in a cut-off frequency of 3.2 GHz, with a value of the return loss of -5.89 dB and an insertion loss of -4.31 dB.


Sign in / Sign up

Export Citation Format

Share Document